2026届湖北省恩施高一上数学期末监测模拟试题含解析_第1页
2026届湖北省恩施高一上数学期末监测模拟试题含解析_第2页
2026届湖北省恩施高一上数学期末监测模拟试题含解析_第3页
2026届湖北省恩施高一上数学期末监测模拟试题含解析_第4页
2026届湖北省恩施高一上数学期末监测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届湖北省恩施高一上数学期末监测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.数学家欧拉于1765年在他的著作《三角形的几何学》中首次提出定理:三角形的外心(三边中垂线的交点)、重心(三边中线的交点)、垂心(三边高的交点)依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线被后人称之为三角形的欧拉线.已知的顶点为,,,则该三角形的欧拉线方程为().注:重心坐标公式为横坐标:;纵坐标:A. B.C. D.2.若函数()在有最大值无最小值,则的取值范围是()A. B.C. D.3.高斯是德国著名的数学家,近代数学奠基者之一,享有数学王子的美誉,他和阿基米德、牛顿并列为世界三大数学家,用其姓名命名的“高斯函数”为,其中表示不超过的最大整数,例如,已知函数,令函数,则的值域为()A.B.C.D.4.已知,则os等于()A. B.C. D.5.对于用斜二测画法画水平放置的图形的直观图来说,下列描述不正确的是A.三角形的直观图仍然是一个三角形 B.的角的直观图会变为的角C.与轴平行的线段长度变为原来的一半 D.原来平行的线段仍然平行6.函数的定义域为()A.(-∞,4) B.[4,+∞)C.(-∞,4] D.(-∞,1)∪(1,4]7.已知函数在区间上单调递减,则实数的取值范围为()A. B.C. D.8.直线L将圆平分,且与直线平行,则直线L的方程是A.BC.D.9.已知函数,则该函数的零点位于区间()A. B.C. D.10.七巧板,又称七巧图、智慧板,是中国古代劳动人民的发明,其历史至少可以追溯到公元前一世纪,到了明代基本定型,于明、清两代在民间广泛流传.某同学用边长为4dm的正方形木板制作了一套七巧板,如图所示,包括5个等腰直角三角形,1个正方形和1个平行四边形.若该同学从5个三角形中任取出2个,则这2个三角形的面积之和不小于另外3个三角形面积之和的概率是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.如图,在棱长均相等的正四棱锥最终,为底面正方形的重心,分别为侧棱的中点,有下列结论:①平面;②平面平面;③;④直线与直线所成角的大小为其中正确结论的序号是______.(写出所有正确结论的序号)12.已知正实数a,b满足,则的最小值为___________.13.已知是定义在R上的偶函数,且在上单调递减,若(且),则a的取值范围为_____________.14.已知实数满足,则________15.函数fx=16.已知函数,现有如下几个命题:①该函数为偶函数;

②是该函数的一个单调递增区间;③该函数的最小正周期为;④该函数的图像关于点对称;⑤该函数值域为.其中正确命题的编号为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在体育知识有奖问答竞赛中,甲、乙、丙三人同时回答一道有关篮球知识的问题,已知甲答题正确的概率是,乙答题错误的概率是,乙、丙两人都答题正确的概率是,假设每人答题正确与否是相互独立的(1)求丙答题正确的概率;(2)求甲、丙都答题错误,且乙答题正确的概率18.已知有半径为1,圆心角为a(其中a为给定的锐角)的扇形铁皮OMN,现利用这块铁皮并根据下列方案之一,裁剪出一个矩形.方案1:如图1,裁剪出的矩形ABCD的顶点A,B在线段ON上,点C在弧MN上,点D在线段OM上;方案2:如图2,裁剪出的矩形PQRS的顶点P,S分别在线段OM,ON上,顶点Q,R在弧MN上,并且满足PQ∥RS∥OE,其中点E为弧MN的中点.(1)按照方案1裁剪,设∠NOC=,用表示矩形ABCD的面积S1,并证明S1的最大值为;(2)按照方案2裁剪,求矩形PQRS的面积S2的最大值,并与(1)中的结果比较后指出按哪种方案可以裁剪出面积最大的矩形.19.已知函数的图象经过点(1)求的解析式;(2)若不等式对恒成立,求m的取值范围20.设分别是的边上的点,且,,,若记试用表示.21.已知函数的部分图象如图所示,其中.(1)求值;(2)若角是的一个内角,且,求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】由重心坐标公式得重心的坐标,根据垂直平分线的性质设出外心的坐标为,再由求出,然后求出欧拉线的斜率,点斜式就可求得其方程.【详解】设的重点为,外心为,则由重心坐标公式得,并设的坐标为,解得,即欧拉方程为:,即:故选:D【点睛】本题考查直线方程,两点之间的距离公式,三角形的重心、垂心、外心的性质,考查了理解辨析能力及运算能力.2、B【解析】求出,根据题意结合正弦函数图象可得答案.【详解】∵,∴,根据题意结合正弦函数图象可得,解得.故选:B.3、C【解析】先进行分离,然后结合指数函数与反比例函数性质求出的值域,结合已知定义即可求解【详解】解:因为,所以,所以,则的值域故选:C4、A【解析】利用诱导公式即可得到结果.【详解】∵∴os故选A【点睛】本题考查诱导公式的应用,属于基础题.5、B【解析】根据斜二测画法,三角形的直观图仍然是一个三角形,故正确;的角的直观图不一定的角,例如也可以为,所以不正确;由斜二测画法可知,与轴平行的线段长度变为原来的一半,故正确;根据斜二测画法的作法可得原来平行的线段仍然平行,故正确,故选B.6、D【解析】根据函数式的性质可得,即可得定义域;【详解】根据的解析式,有:解之得:且;故选:D【点睛】本题考查了具体函数定义域的求法,属于简单题;7、A【解析】先由题意,求出函数的单调递减区间,再由题中条件,列出不等式组求解,即可得出结果.【详解】由题意,令,则,即函数的单调递减区间为,因为函数在区间上单调递减,所以,解得,所以,.故选:A.【点睛】关键点点睛:本题的关键是用不等式法求函数的单调递减区间时,应该令,且该函数的周期应为,则.8、C【解析】圆的圆心坐标,直线L将圆平分,所以直线L过圆的圆心,又因为与直线平行,所以可设直线L的方程为,将代入可得所以直线L的方程为即,所以选C考点:求直线方程9、B【解析】分别将选项中区间的端点代入,利用零点存在性定理判断即可【详解】由题,,,,所以,故选:B【点睛】本题考查利用零点存在性定理判断零点所在区间,属于基础题10、D【解析】先逐个求解所有5个三角形的面积,再根据要求计算概率.【详解】如图所示,,,,,的面积分别为,,将,,,,分别记为,,,,,从这5个三角形中任取出2个,则样本空间,共有10个样本点记事件表示“从5个三角形中任取出2个,这2个三角形的面积之和不小于另外3个三角形面积之和”,则事件包含的样本点为,,,共3个,所以故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、①②③【解析】连接AC,易得PC∥OM,可判结论①证得平面PCD∥平面OMN,可判结论②正确由勾股数可得PC⊥PA,得到OM⊥PA,可判结论③正确根据线线平行先找到直线PD与直线MN所成的角为∠PDC,知三角形PDC为等边三角形,所以∠PDC=60°,可判④错误【详解】如图,连接AC,易得PC∥OM,所以PC∥平面OMN,结论①正确同理PD∥ON,所以平面PCD∥平面OMN,结论②正确由于四棱锥的棱长均相等,所以AB2+BC2=PA2+PC2=AC2,所以PC⊥PA,又PC∥OM,所以OM⊥PA,结论③正确由于M,N分别为侧棱PA,PB的中点,所以MN∥AB,又四边形ABCD为正方形,所以AB∥CD,所以直线PD与直线MN所成的角即为直线PD与直线CD所成的角,为∠PDC,知三角形PDC为等边三角形,所以∠PDC=60°,故④错误故答案为①②③【点睛】本题考查线面平行、面面平行,考查线线角,考查学生分析解决问题的能力,属于中档题12、##【解析】将目标式转化为,应用柯西不等式求取值范围,进而可得目标式的最小值,注意等号成立条件.【详解】由题设,,则,又,∴,当且仅当时等号成立,∴,当且仅当时等号成立.∴的最小值为.故答案为:.13、【解析】根据偶函数的性质,结合绝对值的性质、对数函数的单调性,分类讨论,求出a的取值范围.【详解】因为已知是定义在R上的偶函数,所以由,又因为上单调递减,所以有.当时,;当时,.故答案为:【点睛】本题考查利用函数的奇偶性和单调性解不等式,考查了对数函数的单调性,考查了数学运算能力.14、4【解析】方程的根与方程的根可以转化为函数与函数交点的横坐标和函数与函数交点的横坐标,再根据与互为反函数,关于对称,即可求出答案.【详解】,,令,,此方程的解即为函数与函数交点的横坐标,设为,如下图所示;,此方程的解即为函数与函数交点的横坐标,设为,如下图所示,与互反函数,关于对称,联立方程,解得,即,.故答案为:4.15、(0.+∞)【解析】函数定义域为R,∵3x>0∴3考点:函数单调性与值域16、②③【解析】由于为非奇非偶函数,①错误.,此时,其在上为增函数,②正确.由于,所以函数最小正周期为,③正确.由于,故④正确.当时,,故⑤错误.综上所述,正确的编号为②③.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)设丙答对这道题的概率为,利用对立事件和相互独立事件概率公式,即可求解;(2)由相互独立事件概率乘法公式,即可求解.【小问1详解】记甲、乙、丙3人独自答对这道题分别为事件,设丙答对题的概率,乙答对题的概率,由于每人回答问题正确与否是相互独立的,因此是相互独立事件.根据相互独立事件同时发生的概率公式,得,解得,所以丙对这道题的概率为【小问2详解】甲、丙都答题错误,且乙答题正确的概率为甲、乙、丙三人都回答错误的概率为18、(1),证明见解析;(2),方案1可以裁剪出面积最大的矩形.【解析】(1)分别用含有的三角函数表示,写出矩形的面积,利用三角函数求最值;(2)利用(1)的结论,根据对称性知,矩形的最大面积为,然后利用作差法比较大小即可【小问1详解】在图1中,,,,,,,当时,矩形最大面积为,得证.【小问2详解】在图(2)中,设与边,分别交于点,,由(1)的结论,可得矩形的最大面积为,根据对称性知,矩形的最大面积为.因为为锐角,所以,于是.因此,.故按照方案1可以裁剪出面积最大的矩形,其最大面积为.19、(1),(2)【解析】(1)直接代入两点计算得到答案.(2)变换得到,判断在上单调递减,计算,解不等式得到答案.【详解】(1)由题意得解得,.故,(2)不等式,即不等式,则不等式在上恒成立,即不等式上恒成立,即在上恒成立因为在上单调递减,在上单调递减,所以在上单调递减,故.因为在上恒成立,所以,即,解得故m的取值范围为【点睛】本题考查了函数的解析式,恒成立问

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论