版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省武胜烈面中学2026届高二数学第一学期期末调研模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.下列说法错误的是()A.“若,则”的逆否命题是“若,则”B.“”的否定是”C.“是"”的必要不充分条件D.“或是"”的充要条件2.如图,在单位正方体中,以为原点,,,为坐标向量建立空间直角坐标系,则平面的法向量是()A.,1, B.,1,C.,, D.,1,3.“”是“”的A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.曲线与曲线()的()A.长轴长相等 B.短轴长相等C.离心率相等 D.焦距相等5.已知向量a→=(1,1,k),A. B.C. D.6.若命题“对任意,使得成立”是真命题,则实数a的取值范围是()A. B.C. D.7.设双曲线:(,)的右顶点为,右焦点为,为双曲线在第二象限上的点,直线交双曲线于另一个点(为坐标原点),若直线平分线段,则双曲线的离心率为()A. B.C. D.8.若,则下列结论不正确的是()A. B.C. D.9.某学校的校车在早上6:30,6:45,7:00到达某站点,小明在早上6:40至7:10之间到达站点,且到达的时刻是随机的,则他等车时间不超过5分钟的概率是()A. B.C. D.10.函数的图象大致为()A B.C D.11.已知圆C过点,圆心在x轴上,则圆C的方程为()A. B.C. D.12.已知直线,,若,则实数的值是()A.0 B.2或-1C.0或-3 D.-3二、填空题:本题共4小题,每小题5分,共20分。13.若函数,则_______14.椭圆与双曲线有公共焦点,设椭圆与双曲线在第一象限内交于点,椭圆与双曲线的离心率分别为为坐标原点,,则的取值范围是___________.15.经过、两点的直线斜率为______.16.已知为坐标原点,等轴双曲线的右焦点为,点在双曲线上,由向双曲线的渐近线作垂线,垂足分别为、,则四边形的面积为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的左、右焦点分别为,,点在椭圆C上,且满足(1)求椭圆C的标准方程;(2)设直线与椭圆C交于不同的两点M,N,且(O为坐标原点).证明:总存在一个确定的圆与直线l相切,并求该圆的方程18.(12分)已知椭圆C:的左右焦为,,点是该椭圆上任意一点,当轴时,,(1)求椭圆C的标准方程;(2)记,求实数m的最大值19.(12分)已知抛物线的方程为,点,过点的直线交抛物线于两点(1)求△OAB面积的最小值(为坐标原点);(2)是否为定值?若是,求出该定值;若不是,说明理由20.(12分)如图,在空间四边形中,分别是的中点,分别在上,且(1)求证:四点共面;(2)设与交于点,求证:三点共线.21.(12分)已知圆C的圆心在直线上,且过点,(1)求圆C的方程;(2)若圆C与直线交于A,B两点,______,求m的值从下列三个条件中任选一个补充在上面问题中并作答:条件①:;条件②:圆上一点P到直线的最大距离为;条件③:22.(10分)已知抛物线的焦点,点在抛物线上.(1)求;(2)过点向轴作垂线,垂足为,过点的直线与抛物线交于两点,证明:为直角三角形(为坐标原点).
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】利用逆否命题、命题的否定、充分必要性的概念逐一判断即可.【详解】对于A,“若,则”的逆否命题是“若,则”,正确;对于B,“”的否定是”,正确;对于C,“”等价于“或,∴“是"”的充分不必要条件,错误;对于D,“或是"”的充要条件,正确.故选:C2、A【解析】设平面的法向量是,,,由可求得法向量.【详解】在单位正方体中,以为原点,,,为坐标向量建立空间直角坐标系,,0,,,1,,,1,,,1,,,0,,设平面的法向量是,,,则,取,得,1,,平面的法向量是,1,.故选:.3、B【解析】因但4、D【解析】分别求出两椭圆的长轴长、短轴长、离心率、焦距,即可判断.【详解】曲线表示焦点在轴上,长轴长为,短轴长为,离心率为,焦距为;曲线表示焦点在轴上,长轴长为,短轴长为,离心率为,焦距为.对照选项可知:焦距相等.故选:D.5、D【解析】根据向量的坐标运算和向量垂直数量积为0可解.【详解】解:根据题意,易得a→∵与两向量互相垂直,∴0+2+k+2=0,解得.故选:D6、A【解析】由题得对任意恒成立,求出的最大值即可.【详解】解:由题得对任意恒成立,(当且仅当时等号成立)所以故选:A7、A【解析】由给定条件写出点A,F坐标,设出点B的坐标,求出线段FC的中点坐标,由三点共线列式计算即得.【详解】令双曲线的半焦距为c,点,设,由双曲线对称性得,线段FC的中点,因直线平分线段,即点D,A,B共线,于是有,即,即,离心率.故选:A8、B【解析】由得出,再利用不等式的基本性质和基本不等式来判断各选项中不等式的正误.【详解】,,,,A选项正确;,B选项错误;由基本不等式可得,当且仅当时等号成立,,则等号不成立,所以,C选项正确;,,D选项正确.故选:B.【点睛】本题考查不等式正误的判断,涉及不等式的基本性质和基本不等式,考查推理能力,属于基础题.9、B【解析】求出小明等车时间不超过5分钟能乘上车的时长,即可计算出概率.【详解】6:40至7:10共30分钟,小明同学等车时间不超过5分钟能乘上车只能是6:40至6:45和6:55至7:00到站,共10分钟,所以所求概率为.故选:B10、A【解析】利用导数求得的单调区间,结合函数值确定正确选项.【详解】由,可得函数的减区间为,增区间为,当时,,可得选项为A故选:A11、C【解析】设出圆的标准方程,将已知点的坐标代入,解方程组即可.【详解】设圆的标准方程为,将坐标代入得:,解得,故圆的方程为,故选:C.12、C【解析】由,结合两直线一般式有列方程求解即可.【详解】由知:,解得:或故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】先对函数求导,然后令可求出的值【详解】因为,所以,则,解得故答案为:14、【解析】根据椭圆和双曲线得定义求得,再根据,可得,从而有,求出的范围,根据,结合基本不等式即可得出答案.【详解】解:设,则有,所以,即,又因为,所以,所以,即,则,由,得,所以,所以,则,由,得,因为,当且仅当,即时,取等号,因为,所以,所以,即,所以的取值范围是.故答案为:.15、【解析】利用斜率公式可求得结果.【详解】由斜率公式可知,直线的斜率为.故答案为:.16、##【解析】求出双曲线的方程,可求得双曲线的两条渐近线方程,分析可知四边形为矩形,然后利用点到直线的距离公式以及矩形的面积公式可求得结果.【详解】因为双曲线为等轴双曲线,则,,可得,所以,双曲线的方程为,双曲线的渐近线方程为,则双曲线的两条渐近线互相垂直,则,,,所以,四边形为矩形,设点,则,不妨设点为直线上的点,则,,所以,.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)理由见解析,圆的方程为.【解析】(1)根据给定条件可得,结合勾股定理、椭圆定义求出a,b得解.(2)联立直线l与椭圆C的方程,利用给定条件求出k,m的关系,再求出原点O到直线l的距离即可推理作答.【小问1详解】因,则,点在椭圆C上,则椭圆C的半焦距,,,因此,,解得,,所以椭圆C的标准方程是:.【小问2详解】由消去y并整理得:,依题意,,设,,因,则,于是得,此时,,则原点O到直线l的距离,所以,存在以原点O为圆心,为半径的圆与直线l相切,此圆的方程为.【点睛】思路点睛:涉及动直线与圆锥曲线相交满足某个条件问题,可设直线方程为,再与圆锥曲线方程联立结合已知条件探求k,m的关系,然后推理求解.18、(1)(2)【解析】(1)利用椭圆的定义及勾股定理可求解;(2)问题转化为在轴截距的问题,临界条件为直线与椭圆相切,求解即可.【小问1详解】因为,,所以,∴,所以椭圆标准方程为:【小问2详解】要求的最值,即求直线在轴截距的最值,可知当直线与椭圆相切时,m取得最值.联立方程:,整理得,解得所以实数m的最大值为19、(1);(2)是,该定值.【解析】(1)根据弦长公式、点到直线距离公式,结合三角形面积公式进行求解即可;(2)根据两点间距离公式,结合一元二次方程根与系数的关系进行求解即可.【小问1详解】显然直线存在斜率,设直线的方程为:,所以有,设,则有,,原点到直线的距离为:,△OAB的面积为:,当时,有最小值,最小值为;【小问2详解】是定值,理由如下:由(1)可知:,,【点睛】关键点睛:利用一元二次方程根与系数关系是解题的关键.20、(1)证明见解析;(2)证明见解析.【解析】(1)根据题意,利用中位线定理和线段成比例,先证明,进而证明问题;(2)先证明平面,平面,进而证明点P在两个平面的交线上,然后证得结论.【小问1详解】连接分别是的中点,.在中,.所以四点共面.【小问2详解】,所以,又平面平面,同理:,平面平面,为平面与平面的一个公共点.又平面平面,即三点共线.21、(1)(2)【解析】(1)根据圆心在过点,的线段的中垂线上,同时圆心圆心在直线上,可求出圆心的坐标,进而求得半径,最后求出其标准方程;(2)选①利用用垂径定理可求得答案,选②根据圆上一点P到直线的最大距离为可求得答案,选③先利用向量的数量积可求得,解法就和选①时相同.【小问1详解】由题意可知,圆心在点的中垂线上,该中垂线的方程为,于是,由,解得圆心,圆C的半径所以,圆C的方程为;【小问2详解】①,因为,,所以圆心C到直线l的距离,则,解得,②,圆上一点P到直线的最
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年南昌市劳动保障事务代理中心招聘6名项目外包服务人员备考题库及答案详解参考
- 2026年南宁市第十七中学秋季学期招聘备考题库及答案详解参考
- 2026年四川深广合作产业投资开发有限公司产业招商岗公开招聘备考题库完整参考答案详解
- 2026年国家电投集团内蒙古白音华煤电有限公司铝电分公司自备电厂招聘备考题库及1套参考答案详解
- 2026年中移园区建设发展有限公司招聘备考题库有答案详解
- 2026年中煤江南建设发展集团有限公司招聘备考题库完整参考答案详解
- 2026年中关村第三小学永新分校招聘备考题库及1套参考答案详解
- 2026年华亭市西华镇西塬村招聘专职大学生村文书备考题库及参考答案详解一套
- 2026年唐山智算科技有限公司劳务派遣岗位(招投标专员)招聘备考题库及答案详解参考
- 2026年合肥工业大学(合肥校区)专职辅导员、心理健康教育教师(辅导员岗位)招聘备考题库及答案详解参考
- 君山岛年度营销规划
- 2025年山东师范大学马克思主义基本原理概论期末考试参考题库
- 期末测试卷(试卷)2025-2026学年三年级数学上册(人教版)
- DB32T 5132.3-2025 重点人群职业健康保护行动指南 第3部分:医疗卫生人员
- 2025秋中国南水北调集团新能源投资有限公司校园招聘(25人)(公共基础知识)测试题带答案解析
- 2025至2030中国X射线衍射仪(XRD)行业产业运行态势及投资规划深度研究报告
- 核电厂抗震设计标准
- 2026年经销商合同
- 2023-2025年中考英语真题汇编01之单项选择(时态和语态)
- 学堂在线 雨课堂 学堂云 科研伦理与学术规范 章节测试答案
- 腹腔粘液性肿瘤课件
评论
0/150
提交评论