版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
天津四十二中2026届高二上数学期末教学质量检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.直线的斜率为()A.135° B.45°C.1 D.-12.若,则n的值为()A.7 B.8C.9 D.103.已知双曲线的一个焦点到它的一条渐近线的距离为,则()A.5 B.25C. D.4.设是区间上的连续函数,且在内可导,则下列结论中正确的是()A.的极值点一定是最值点B.的最值点一定是极值点C.在区间上可能没有极值点D.在区间上可能没有最值点5.已知函数,,若,使得,则实数的取值范围是()A. B.C. D.6.下列四个命题中,为真命题的是()A.若a>b,则ac2>bc2B.若a>b,c>d,则a﹣c>b﹣dC.若a>|b|,则a2>b2D.若a>b,则7.在等比数列中,若是函数的极值点,则的值是()A. B.C. D.8.有下列三个命题:①“若,则互为相反数”的逆命题;②“若,则”的逆否命题;③“若,则”的否命题.其中真命题的个数是A.0 B.1C.2 D.39.已知实数满足方程,则的最大值为()A.3 B.2C. D.10.已知数列为等比数列,则“,”是“为递减数列”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件11.已知直线的方程为,则该直线的倾斜角为()A. B.C. D.12.已知定义在上的函数满足:,且,则的解集为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若动直线分别与函数和的图像交于A,B两点,则的最小值为______14.过点且与直线垂直的直线方程为______15.已知数列满足,,则数列的前n项和______16.若点O和点F分别为椭圆+=1的中心和左焦点,点P为椭圆上的任意一点,则·的最大值为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)近年来,由于耕地面积的紧张,化肥的施用量呈增加趋势,一方面,化肥的施用对粮食增产增收起到了关键作用,另一方面,也成为环境污染,空气污染,土壤污染的重要来源之一.如何合理地施用化肥,使其最大程度地促进粮食增产,减少对周围环境的污染成为需要解决的重要问题.研究粮食产量与化肥施用量的关系,成为解决上述问题的前提.某研究团队收集了10组化肥施用量和粮食亩产量的数据并对这些数据作了初步处理,得到了如图所示的散点图及一些统计量的值,化肥施用量为x(单位:公斤),粮食亩产量为y(单位:百公斤).参考数据:65091.552.51478.630.5151546.5表中.(1)根据散点图判断与,哪一个适宜作为粮食亩产量y关于化肥施用量x的回归方程类型(给出判断即可,不必说明理由);(2)根据(1)的判断结果及表中数据,建立y关于x的回归方程;并预测化肥施用量为27公斤时,粮食亩产量y的值;(3)经生产技术提高后,该化肥的有效率Z大幅提高,经试验统计得Z大致服从正态分布N),那这种化肥的有效率超过58%的概率约为多少?附:①对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为;②若随机变量,则有,;③取.18.(12分)已知椭圆的离心率为,且过点.(1)求椭圆的方程;(2)四边形的顶点在椭圆上,且对角线,均过坐标原点,若,求的取值范围.19.(12分)设等差数列的前项和为,为各项均为正数的等比数列,且,,再从条件①:;②:;③:这三个条件中选择一个作为已知,解答下列问题:(1)求和的通项公式;(2)设,数列的前项和为,求证:20.(12分)如图,在正方体中,E,F,G,H,K,L分别是AB,,,,,DA各棱的中点.(1)求证:E,F,G,H,K,L共面:(2)求证:平面EFGHKL;(3)求与平面EFGHKL所成角的余弦值.21.(12分)已知数列满足,,设.(1)证明数列为等比数列,并求通项公式;(2)设,求数列的前项和.22.(10分)已知圆的圆心在直线上,且圆与轴相切于点(1)求圆的标准方程;(2)若直线与圆相交于,两点,求的面积
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由斜截式直接看出直线斜率.【详解】由题意得:直线斜率为-1,故选:D2、D【解析】根据给定条件利用组合数的性质计算作答【详解】因为,则由组合数性质有,即,所以n的值为10.故选:D3、B【解析】由渐近线方程得到,焦点坐标为,渐近线方程为:,利用点到直线距离公式即得解【详解】由题意,双曲线故焦点坐标为,渐近线方程为:焦点到它的一条渐近线的距离为:解得:故选:B4、C【解析】根据连续函数的极值和最值的关系即可判断【详解】根据函数的极值与最值的概念知,的极值点不一定是最值点,的最值点不一定是极值点.可能是区间的端点,连续可导函数在闭区间上一定有最值,所以选项A,B,D都不正确,若函数在区间上单调,则函数在区间上没有极值点,所以C正确故选:C.【点睛】本题主要考查函数的极值与最值的概念辨析,属于容易题5、A【解析】由定义证明函数的单调性,再由函数不等式恒能成立的性质得出,从而得出实数的取值范围.【详解】任取,,即函数在上单调递减,若,使得,则即故选:A【点睛】结论点睛:本题考查不等式恒成立问题,解题关键是转化为求函数的最值,转化时要注意全称量词与存在量词对题意的影响.等价转化如下:(1),,使得成立等价于(2),,不等式恒成立等价于(3),,使得成立等价于(4),,使得成立等价于6、C【解析】利用不等式的性质结合特殊值法依次判断即可【详解】当c=0时,A不成立;2>1,3>-1,而2-3<1-(-1),故B不成立;a=2,b=1时,,D不成立;由a>|b|知a>0,所以a2>b2,C正确故选:C7、B【解析】根据导数的性质求出函数的极值点,再根据等比数列的性质进行求解即可.【详解】,当时,单调递增,当时,单调递减,当时,单调递增,所以是函数的极值点,因为,且所以,故选:B8、B【解析】①写出命题的逆命题,可以进行判断为真命题;②原命题和逆否命题真假性相同,而通过举例得到原命题为假,故逆否命题也为假;③写出命题的否命题,通过举出反例得到否命题为假【详解】①“若,则互为相反数”的逆命题是,若互为相反数,则;是真命题;②“若,则”,当a=-1,b=-2,时不满足,故原命题为假命题,而原命题和逆否命题真假性相同,故得到命题为假;③“若,则”的否命题是若,则,举例当x=5时,不满足不等式,故得到否命题是假命题;故答案为B.【点睛】这个题目考查了命题真假的判断,涉及命题的否定,命题的否命题,逆否命题,逆命题的相关概念,注意原命题和逆否命题的真假性相同,故需要判断逆否命题的真假时,只需要判断原命题的真假9、D【解析】将方程化为,由圆的几何性质可得答案.【详解】将方程变形为,则圆心坐标为,半径,则圆上的点的横坐标的范围为:则x的最大值是故选:D.10、A【解析】本题可依次判断“,”是否是“为递减数列”的充分条件以及必要条件,即可得出结果.【详解】若等比数列满足、,则数列为递减数列,故“,”是“为递减数列”的充分条件,因为若等比数列满足、,则数列也是递减数列,所以“,”不是“为递减数列”的必要条件,综上所述,“,”是“为递减数列”的充分不必要条件,故选:A.【点睛】本题考查充分条件以及必要条件的判定,考查等比数列以及递减数列的相关性质,体现了基础性和综合性,考查推理能力,是简单题.11、D【解析】设直线倾斜角为,则,即可求出.【详解】设直线的倾斜角为,则,又因为,所以.故选:D.12、A【解析】令,利用导数可判断其单调性,从而可解不等式.【详解】设,则,故为上的增函数,而可化为即,故即,所以不等式的解集为,故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】利用导数求出与平行的曲线的切线,再利用两点间距离公式进行求解即可.【详解】设曲线的切点为,由,所以曲线的切线的斜率为,直线的斜率为,当切线与平行时,即,即切点为,当直线过切点时,有最小值,即,此时,解方程组:,,故答案为:【点睛】关键点睛:利用曲线的切线性质进行求解是解题的关键.14、【解析】先设出与直线垂直的直线方程,再把代入进行求解.【详解】设与直线垂直的直线为,将代入得:,解得:,故所求直线方程为.故答案为:15、【解析】先求出,利用裂项相消法求和.【详解】因为数列满足,,所以数列为公差d=2的等差数列,所以,所以所以.故答案为:.16、6【解析】由椭圆方程得到F,O的坐标,设P(x,y)(-2≤x≤2),利用数量积的坐标运算将·转化为二次函数最值求解.【详解】由椭圆+=1,可得F(-1,0),点O(0,0),设P(x,y)(-2≤x≤2),则·=x2+x+y2=x2+x+3=x2+x+3=(x+2)2+2,-2≤x≤2,当x=2时,·取得最大值6.故答案为:6【点睛】本题主要考查平面向量的数量积及应用以及椭圆的几何性质和二次函数求最值,还考查了运算求解的能力,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2);810公斤;(3).【解析】(1)根据散点图的变化趋势,结合给定模型的性质直接判断适合的模型即可.(2)将(1)中模型取对得,结合题设及表格数据求及参数,进而可得参数c,即可确定回归方程,进而估计时粮食亩产量y的值.(3)由题设知,结合特殊区间的概率值及正态分布的对称性求即可.【小问1详解】根据散点图,呈现非线性的变化趋势,故更适合作为关于的回归方程类型.【小问2详解】对两边取对数,得,即,由表中数据得:,,,则,∴关于的回归方程为,当时,,∴当化肥施用量为27公斤时,粮食亩产量约为810公斤.小问3详解】依题意,,则有,∴,则,∴这种化肥的有效率超过58%的概率约为.18、(1)(2)【解析】(1)根据椭圆的离心率为,且过点,由求解;(2)设直线AC方程为,则直线BD的方程为,分时,与椭圆方程联立求得A,B的坐标,再利用数量积求解.【小问1详解】解:因为椭圆的离心率为,且过点,所以,所以,所以椭圆的方程为;【小问2详解】设直线AC的方程为,则直线BD的方程为.当时,联立,得,不妨设A,联立,得,当B时,,,当B时,,,当时,同理可得上述结论.综上,19、(1)an=n,bn=(2)证明见解析【解析】(1)设等差数列的公差为d,等比数列的公比为q,q>0,由等差数列和等比数列的通项公式及前n项和公式,列出方程组求解即可得答案;(2)求出,利用裂项相消求和法求出前项和为,即可证明【小问1详解】解:设等差数列的公差为d,等比数列的公比为q,q>0,选①:,又,,可得1+5d=3q,1+4d=5d,解得d=1,q=2,则an=1+n﹣1=n,bn=;选②:,又a1=b1=1,a6=3b2,可得1+5d=3q,q4=4(q3﹣q2),解得d=1,q=2,则an=1+n﹣1=n,bn=;选③:,又a1=b1=1,a6=3b2,可得1+5d=3q,8+28d=6(3+3d),解得d=1,q=2,则an=1+n﹣1=n,bn=;小问2详解】证明:由(1)知,,,所以20、(1)证明见解析;(2)证明见解析;(3).【解析】建立空间直角坐标系,求出各点的坐标;(1)用向量的坐标运算证明向量共面,进而证明点共面;(2)利用向量的数量积的坐标运算证明,即可;(3)确定平面EFGHKL的一个法向量,利用空间角度的向量计算公式求得答案.【小问1详解】证明:以D为原点,分别以DA,DC,所在直线为x,y,z轴建立空间直角坐标系,不妨设正方体的棱长为2.则,,,,,,,.可得,,,,,.可得,,,,,所以,,,,共面,又它们过同一点E,所以E,F,G,H,K,L共面.【小问2详解】证明:由(1)得,,又故,,又,所以平面LEF,即平面EFGHKL.【小问3详解】由(2)知,是平面EFGHKL的一个法向量,设与平面EFGHKL所成角为,,,.所以,所以与平面EFGHKL所成角的余弦值为.21、(1)证明见解析,;(2).【解析】(1)计算可得出,根据等比数列的定义可得出数列为等比数列,确定该数列的首项和公比,可求得数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 车间安全生产培训内容
- 玻璃体积血护理课件模板
- 车间安全培训教学教材课件
- 车间安全培训台账课件
- 车间安全培训PT模板课件
- 黔西县安全员培训课件
- 2026年智能喷灌头项目可行性研究报告
- 2026年碳汇监测与计量服务项目建议书
- 2026年门窗传感器项目营销方案
- 2026年电源管理芯片项目可行性研究报告
- 2025年无人机资格证考试题库+答案
- 南京工装合同范本
- 登高作业监理实施细则
- DB42-T 2462-2025 悬索桥索夹螺杆紧固力超声拉拔法检测技术规程
- 大学生择业观和创业观
- 车载光通信技术发展及无源网络应用前景
- 工程伦理-形考任务四(权重20%)-国开(SX)-参考资料
- 初中书香阅读社团教案
- 酒店年终总结汇报
- 《无人机地面站与任务规划》 课件 第1-5章 概论 -无人机航测任务规划与实施
- 绿色前缀5000亩生态农业示范园区建设规模及运营模式可行性研究报告
评论
0/150
提交评论