贵州省贵阳市四校2026届数学高一上期末监测试题含解析_第1页
贵州省贵阳市四校2026届数学高一上期末监测试题含解析_第2页
贵州省贵阳市四校2026届数学高一上期末监测试题含解析_第3页
贵州省贵阳市四校2026届数学高一上期末监测试题含解析_第4页
贵州省贵阳市四校2026届数学高一上期末监测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

贵州省贵阳市四校2026届数学高一上期末监测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.命题“且”是命题“”的()条件A.充要 B.充分不必要C.必要不充分 D.既不充分也不必要2.已知函数的图象的一部分如图1所示,则图2中的函数图象对应的函数解析式为()A. B.C. D.3.已知函数的部分图象如图所示,则函数图象的一个对称中心可能为()A. B.C. D.4.设函数的值域为R,则实数a的取值范围是()A.(-∞,1] B.[1,+∞)C.(-∞,5] D.[5,+∞)5.为保障食品安全,某监管部门对辖区内一家食品企业进行检查,现从其生产的某种产品中随机抽取100件作为样本,并以产品的一项关键质量指标值为检测依据,整理得到如下的样本频率分布直方图.若质量指标值在内的产品为一等品,则该企业生产的产品为一等品的概率约为()A.0.38 B.0.61C.0.122 D.0.756.已知,,则下列不等式正确的是()A. B.C. D.7.函数f(x)=的定义域为()A.(2,+∞) B.(0,2)C.(-∞,2) D.(0,)8.已知函数与的图象关于轴对称,当函数和在区间同时递增或同时递减时,把区间叫做函数的“不动区间”.若区间为函数的“不动区间”,则实数的取值范围是A. B.C. D.9.下列每组函数是同一函数的是A.f(x)=x-1, B.f(x)=|x-3|,C.,g(x)=x+2 D.,10.集合,,则P∩M等于A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数是偶函数,且它的值域为,则__________12.将一个高为的圆锥沿其侧面一条母线展开,其侧面展开图是半圆,则该圆锥的底面半径为______13.若关于的方程只有一个实根,则实数的取值范围是______.14.已知函数,,则________15.某时钟的秒针端点到中心点的距离为6cm,秒针均匀地绕点旋转,当时间时,点与钟面上标12的点重合,将,两点的距离表示成的函数,则_______,其中16.____________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,(1)求函数f(x)的最小正周期和单调递增区间;(2)将函数的图象上各点的纵坐标保持不变,横坐标缩短到原来的,再把所得到的图象向左平移个单位长度,得到函数的图象,求函数在区间上的值域18.已知函数.(1)求函数振幅、最小正周期、初相;(2)用“五点法”画出函数在上的图象19.已知向量,,设函数=+(1)求函数的最小正周期和单调递增区间;(2)当时,求函数的值域20.已知向量,向量分别为与向量同向的单位向量.(Ⅰ)求向量与的夹角;(Ⅱ)求向量的坐标.21.已知函数的一段图像如图所示.(1)求此函数的解析式;(2)求此函数在上的单调递增区间.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】将化为,求出x、y值,根据充要条件的定义即可得出结果.【详解】由,可得,解得x=1且y=2,所以“x=1且y=2”是“”的充要条件.故选:A.2、B【解析】利用三角函数的图象变换规律可求得结果.【详解】观察图象可知,右方图象是由左方图象向左移动一个长度单位后得到的图象,再把的图象上所有点的横坐标缩小为原来的(纵坐标不变)得到的,所以右图的图象所对应的解析式为.故选:B3、C【解析】先根据图象求出,得到的解析式,再根据整体代换法求出其对称中心,赋值即可得出答案【详解】由图可知,,,∴,∴当时,,即令,解得当时,可得函数图象的一个对称中心为故选:C.【点睛】本题主要通过已知三角函数的图像求解析式考查三角函数的性质,属于中档题.利用利用图象先求出周期,用周期公式求出,利用特殊点求出,正确求是解题的关键.求解析式时,求参数是确定函数解析式的关键,由特殊点求时,一定要分清特殊点是“五点法”的第几个点,用五点法求值时,往往以寻找“五点法”中的第一个点为突破口,“第一点”(即图象上升时与轴的交点)时;“第二点”(即图象的“峰点”)时;“第三点”(即图象下降时与轴的交点)时;“第四点”(即图象的“谷点”)时;“第五点”时.4、B【解析】分段函数中,根据对数函数分支y=log2x的值域在(1,+∞),而函数的值域为R,可知二次函数y=-x2+a的最大值大于等于1,即可求得a的范围【详解】x>2时,y=log2x>1∴要使函数的值域为R,则y=-x2+a在x≤2上的最大值a大于等于1即,a≥1故选:B【点睛】本题考查了对数函数的值域,由函数的值域及所得对数函数的值域,判断二次函数的的值域范围进而求参数范围5、B【解析】利用频率组距,即可得解.【详解】根据频率分布直方图可知,质量指标值在内的概率故选:B6、C【解析】利用指数函数、对数函数的单调性即可求解.【详解】由为单调递减函数,则,为单调递减函数,则,为单调递增函数,则故.故选:C【点睛】本题考查了指数函数、对数函数的单调性比较指数式、对数式的大小,属于基础题.7、B【解析】列不等式求解【详解】,解得故选:B8、C【解析】若区间[1,2]为函数f(x)=|2x﹣t|的“不动区间”,则函数f(x)=|2x﹣t|和函数F(x)=|﹣t|在[1,2]上单调性相同,则(2x﹣t)(2﹣x﹣t)≤0在[1,2]上恒成立,进而得到答案【详解】∵函数y=f(x)与y=F(x)的图象关于y轴对称,∴F(x)=f(﹣x)=|2﹣x﹣t|,∵区间[1,2]为函数f(x)=|2x﹣t|的“不动区间”,∴函数f(x)=|2x﹣t|和函数F(x)=|2﹣x﹣t|在[1,2]上单调性相同,∵y=2x﹣t和函数y=2﹣x﹣t的单调性相反,∴(2x﹣t)(2﹣x﹣t)≤0在[1,2]上恒成立,即1﹣t(2x+2﹣x)+t2≤0在[1,2]上恒成立,即2﹣x≤t≤2x在[1,2]上恒成立,即≤t≤2,故答案为:C【点睛】(1)本题主要考查不动点定义及利用定义解答数学问题的能力,考查指数函数的图像和性质,考查不等式的恒成立问题,意在考查学生对这些知识的掌握水平和分析推理能力.(2)正确理解不动区间的定义,得到(2x﹣t)(2﹣x﹣t)≤0在[1,2]上恒成立,是解答的关键9、B【解析】分析:根据题意,先看了个函数的定义域是否相同,再观察两个函数的对应法则是否相同,即可得到结论.详解:对于A中,函数的定义域为,而函数的定义域为,所以两个函数不是同一个函数;对于B中,函数的定义域和对应法则完全相同,所以是同一个函数;对于C中,函数的定义域为,而函数的定义域为,所以两个函数不是同一个函数;对于D中,函数的定义域为,而函数的定义域为,所以不是同一个函数,故选B.点睛:本题主要考查了判断两个函数是否是同一个函数,其中解答中考查了函数的定义域的计算和函数的三要素的应用,着重考查了推理与计算能力,属于基础题.10、C【解析】先求出集合M和集合P,根据交集的定义,即得。【详解】由题得,,则.故选:C【点睛】求两个集合的交集并不难,要注意集合P是整数集。二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】展开,由是偶函数得到或,分别讨论和时的值域,确定,的值,求出结果.【详解】解:为偶函数,所以,即或,当时,值域不符合,所以不成立;当时,,若值域为,则,所以.故答案为:.12、1【解析】设该圆锥的底面半径为r,推导出母线长为2r,再由圆锥的高为,能求出该圆锥的底面半径【详解】设该圆锥的底面半径为r,将一个高为的圆锥沿其侧面一条母线展开,其侧面展开图是半圆,,解得,圆锥的高为,,解得故答案为1【点睛】本题考查圆锥的底面半径的求法,考查圆锥性质、圆等基础知识,考查运算求解能力,是基础题13、【解析】把关于的方程只有一个实根,转化为曲线与直线的图象有且只有一个交点,在同一坐标系内作出曲线与直线的图象,结合图象,即可求解.【详解】由题意,关于方程只有一个实根,转化为曲线与直线的图象有且只有一个交点,在同一坐标系内作出曲线与直线的图象,如图所示,结合图象可知,当直线介于和之间的直线或与重合的直线符合题意,又由直线在轴上的截距分别为,所以实数的取值范围是.故答案为.【点睛】本题主要考查了直线与圆的位置关系的应用,其中解答中把方程的解转化为直线与曲线的图象的交点个数,结合图象求解是解答的关键,着重考查了转化思想,以及数形结合思想的应用,属于基础题.14、【解析】发现,计算可得结果.【详解】因为,,且,则.故答案为-2【点睛】本题主要考查函数的性质,由函数解析式,计算发现是关键,属于中档题.15、【解析】设函数解析式为,由题意将、代入求出参数值,即可得解析式.【详解】设,由题意知:,当时,,则,,令得;当时,,则,,令得,所以.故答案为:.16、【解析】,故答案为.考点:对数的运算.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)根据正弦函数的周期性和单调性即可得出答案;(2)根据周期变换和平移变换求出函数,再根据余弦函数的性质即可得出答案.【小问1详解】解:由函数,则函数f(x)的最小正周期,令,解得,所以函数f(x)的单调递增区间为;【小问2详解】解:函数的图象上各点的纵坐标保持不变,横坐标缩短到原来的,得到,再把所得到的图象向左平移个单位长度,得到,当时,,所以,所以函数在区间上的值域为.18、(1)振幅为,最小正周期为,初相为;(2)答案见解析.【解析】(1)首先利用三角恒等变换把三角函数的关系式变形为正弦型函数,利用关系式即求;(2)利用整体思想,使用“五点法”,采用列表、描点、连线画出函数的图像.【小问1详解】∵,∴振幅为,最小正周期为,初相为;【小问2详解】列表0x011+10故函数在上的图像如下图所示:19、(1);;(2)【解析】(1)根据向量数量积的坐标运算及辅助角公式,可得,然后由周期公式去求周期,再结合正弦函数的单调性去求函数的单调递增区间;(2)由(1)知,由求出,再结合正弦函数的单调性去求函数的值域【详解】(1)依题意得===的最小正周期是:由解得,从而可得函数的单调递增区间是:(2)由,可得,所以,从而可得函数的值域是:20、(Ⅰ);(Ⅱ).【解析】(Ⅰ)运用向量的数量积求解即可.(Ⅱ)先根据单位向量的概念求得,再求的坐标试题解析:(Ⅰ)因为向量,所以,,所以,又因为,所以.即向量与的夹角为(Ⅱ)由题意得,,所以即向量的坐标为21、(1);(2)和.【解析】(1)根据三角函数的图象求出A,ω,φ,即可确定函数的解析式;(2)根据函数的表达式,即可求函数f(x)的单调递增区间;【详解】(1)由函数的图象可知A,,∴周期T=16,∵T16,∴ω,∴y=2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论