版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省牟定县一中2026届高一数学第一学期期末教学质量检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,则等于()A.1 B.2C.3 D.62.某甲、乙两人练习跳绳,每人练习10组,每组40个.每组计数的茎叶图如下图,则下面结论中错误的一个是()A.甲比乙的极差大B.乙的中位数是18C.甲的平均数比乙的大D.乙的众数是213.如图是一个体积为10的空间几何体的三视图,则图中的值为()A2 B.3C.4 D.54.下列各式正确是A. B.C. D.5.若,,,则、、大小关系为()A. B.C. D.6.将函数的图像先向右平移个单位,再把所得函数图像横坐标变为原来的,纵坐标不变,得到函数的图像,若函数在上没有零点,则的取值范围是()A. B.C. D.7.函数在区间上的简图是()A. B.C. D.8.下列函数中,与的奇偶性相同,且在上单调性也相同的是()A. B.C. D.9.已知,则().A. B.C. D.10.已知,,且,则的最小值为()A.2 B.3C.4 D.8二、填空题:本大题共6小题,每小题5分,共30分。11.如图,若角的终边与单位圆交于点,则________,________12.已知函数则_______.13.若是幂函数且在单调递增,则实数_______.14.已知,点在直线上,且,则点的坐标为________15.已知直线与两坐标轴所围成的三角形的面积为1,则实数值是____________16.某工厂产生的废气经过滤后排放,过滤过程中废气的污染物含量P(单位:mg/L)与时间t(单位:h)间的关系为,其中,是正的常数.如果在前5h消除了10%的污染物,那么10h后还剩百分之几的污染物________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数求的最小正周期及其单调递增区间;若,求的值域18.某工厂有甲,乙两条相互独立的产品生产线,单位时间内甲,乙两条生产线的产量之比为4:1.现采用分层抽样的方法从甲,乙两条生产线得到一个容量为100的样本,其部分统计数据如下表所示(单位:件).一等品二等品甲生产线76a乙生产线b2(1)写出a,b的值;(2)从上述样本的所有二等品中任取2件,求至少有1件为甲生产线产品的概率;(3)以抽样结果的频率估计概率,现分别从甲,乙两条产品生产线随机抽取10件产品记P1表示从甲生产线随机抽取的10件产品中恰好有5件一等品的概率,P2表示从乙生产线随机抽取的10件产品中恰好有5件一等品的概率,试比较P1和P19.已知函数,其中.(1)求的定义域;(2)当时,求的最小值.20.已知(1)若为第三象限角,求的值(2)求的值(3)求的值21.计算下列各式:(1)(2)
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】利用对数和指数互化,可得,,再利用即可求解.【详解】由得:,,所以,故选:A2、B【解析】通过茎叶图分别找出甲、乙的最大值以及最小值求出极差即可判断A;找出乙中间的两位数即可判断B;分别求出甲、乙的平均数判断C;观察乙中数据即可判断D;【详解】对于A,由茎叶图可知,甲的极差为,乙的极差为,故A正确;对于B,乙中间两位数为,故中位数为,故B错误;对于C,甲的平均数为,乙的平均数为,故C正确;对于D,乙组数据中出现次数最多为21,故D正确;故选:B【点睛】本题考查了由茎叶图估计样本数据的数字特征,属于基础题.3、A【解析】由已知可得:该几何体是一个四棱锥和四棱柱的组合体,其中棱柱的体积为:3×2×1=6,棱锥的体积为:×3×2×x=2x则组合体的体积V=6+2x=10,解得:x=2,故选A点睛:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.4、D【解析】对于,,,故,故错误;根据对数函数的单调性,可知错误故选5、B【解析】由指数函数、对数函数、正弦函数的性质把已知数与0和1比较后可得【详解】,,,所以故选:B【点睛】关键点点睛:本题考查实数的大小比较,对于幂、对数、三角函数值的大小比较,如果能应用相应函数单调性的应该利用单调性比较,如果不能转化,或者是不同类型的的数,可以结合函数的性质与特殊值如0或1等比较后可得结论6、C【解析】先由图象的变换求出的解析式,再由定义域求出的范围,再利用正弦函数的图象和性质,求得的取值范围.【详解】函数的图象先向右平移个单位长度,可得的图象,再将图象上每个点的横坐标变为原来的倍(纵坐标不变),得到函数的图象,∴周期,由,则,若函数在上没有零点,结合正弦函数的图象观察则∴,,解得,又,解得,当时,解得,当时,,可得,.故选:C【点睛】本题考查正弦型的图象变换及零点问题,此类问题通常采用数形结合思想,构建不等关系式求解,属于较难题.第II卷7、B【解析】分别取,代入函数中得到值,对比图象即可利用排除法得到答案.【详解】当时,,排除A、D;当时,,排除C.故选:B.8、C【解析】先求得函数的奇偶性和单调性,结合选项,利用函数的性质和单调性的定义,逐项判定,即可求解.【详解】由题意,函数满足,所以函数为偶函数,当时,可得,结合指数函数的性质,可得函数为单调递增函数,对于A中,函数为奇函数,不符合题意;对于B中,函数为非奇非偶函数函数,不符合题意;对于C中,函数的定义域为,且满足,所以函数为偶函数,设,且时,则,因为且,所以,所以,即,所以在为增函数,符合题意;对于D中,函数为非奇非偶函数函数,不符合题意.故选:C.9、C【解析】将分子分母同除以,再将代入求解.【详解】.故选:C【点睛】本题主要考查同角三角函数基本关系式,还考查了运算求解的能力,属于基础题.10、C【解析】根据条件,变形后,利用均值不等式求最值.【详解】因为,所以.因为,,所以,当且仅当,时,等号成立,故的最小值为4.故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、①.##0.8②.【解析】根据单位圆中的勾股定理和点所在象限求出,然后根据三角函数的定义求出即可【详解】如图所示,点位于第一象限,则有:,且解得:(其中)故答案为:;12、【解析】根据分段函数解析式,由内而外,逐步计算,即可得出结果.【详解】∵,,则∴.故答案为:.13、2【解析】由幂函数可得,解得或2,检验函数单调性求解即可.【详解】为幂函数,所以,解得或2.当时,,在不单调递增,舍去;当时,,在单调递增成立.故答案为.【点睛】本题主要考查了幂函数的定义及单调性,属于基础题.14、,【解析】设点,得出向量,代入坐标运算即得的坐标,得到关于的方程,从而可得结果.【详解】设点,因为点在直线,且,,或,,即或,解得或;即点的坐标是,.【点睛】本题考查了平面向量线性运算的坐标表示以及平面向量的共线问题,意在考查对基础知识的掌握与应用,是基础题.15、1或-1【解析】令x=0,得y=k;令y=0,得x=−2k.∴三角形面积S=|xy|=k2.又S=1,即k2=1,值是1或-1.16、81%【解析】根据题意,利用函数解析式,直接求解.【详解】由题意可知,,所以.所以10小时后污染物含量,即10小时后还剩81%的污染物.故答案为:81%三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),,;(2)【解析】由三角函数的周期公式求周期,再利用正弦型函数的单调性,即可求得函数的单调区间;由x的范围求得相位的范围,进而得到,即可求解函数的值域【详解】(1)由题意,知,所以的最小正周期又由,得,所以的单调递增区间为,;(2)因为,所以,则,所以,所以,即所以的值域为【点睛】本题主要考查了三角函数的图象与性质的应用,其中解答中熟记型函数的图象和性质,准确计算是解答的此类问题的关键,着重考查了推理与运算能力,属于基础题.18、(1)a=4,b=18;(2)1415(3)P1【解析】(1)根据题意列出方程组76+a+b+2=10076+a=4b+2,从而求出a,(2记C为“至少有1件为甲生产线产品”这一事件,首先列出从6件二等品中任取2件的所有结果,然后再找出事件C所包含是基本事件,从而利用古典概型的概率公式即可求出答案.(3)根据样本中甲,乙产品一等品的概率,同时结合二项分布即可比较大小.【小问1详解】由题意,知76+a+b+2=10076+a=4b+2,解得【小问2详解】记样本中甲生产线的4件二等品为A1,A2,从6件二等品中任取2件,所有可能的结果有15个,它们是:A1A3记C为“至少有1件为甲生产线产品”这一事件,则C中的结果有1个,它是B1所以PC【小问3详解】P119、(1)(2).【解析】(1)利用对数的真数为正数求出函数的定义域为.(2)在定义域上把化为,利用二次函数求出,从而求出函数的最小值为.解析:(1)欲使函数有意义,则有,解得,则函数的定义域为.(2)因为,所以,配方得到.因为,故,所以(当时取等号),即的最小值为.点睛:求与对数有关的函数的定义域,应该考虑不变形时自变量满足的条件.20、(1)(2)(3)【解析】(1)化
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2023肺亚实性结节外科管理进展共识解读课件
- 边检安全培训课件
- 手术医生技能培训方案
- 辨色力培训课件
- 车队安全培训模板下载课件
- 车队安全人员培训内容课件
- 车间质量安全培训会课件
- 车间级安全教育课件
- 2025年国有资产清查盘点总结(3篇)
- 2026年内科医生年度工作总结
- 2026长治日报社工作人员招聘劳务派遣人员5人备考题库附答案
- 四省天一联考2025-2026学年高三上学期1月月考物理试题
- 2026年【招聘备考题库】黑龙江省生态环保集团有限公司面向社会公开招聘管理人员备考题库及1套完整答案详解
- 2026国企综合基础知识题库(附答案)
- 王昭君课件教学课件
- 2025年福建泉州惠安县宏福殡仪服务有限公司招聘5人笔试考试参考题库及答案解析
- 2026年教师资格之中学教育知识与能力考试题库300道含答案(a卷)
- 肝硬化顽固性腹水个案护理
- 2026年上半年西藏省中小学教师资格考试(笔试)备考题库附答案(培优a卷)
- 《短视频制作与运营》教案 项目5 短视频剪辑 (剪映)
- 2025年11月5日更新的REACH第35批251项高度关注物质SVHC清单
评论
0/150
提交评论