版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省镇江市淮州中学2026届高一上数学期末考试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列四个几何体中,每个几何体的三视图中有且仅有两个视图相同的是A.①② B.②③C.③④ D.②④2.向量,若,则k的值是()A.1 B.C.4 D.3.在平面直角坐标系中,若角的终边经过点,则()A. B.C. D.4.已知函数,函数有四个不同的的零点,,,,且,则()A.a的取值范围是(0,) B.的取值范围是(0,1)C. D.5.斜率为4的直线经过点A(3,5),B(a,7),C(-1,b)三点,则a,b的值为()A.a=,b=0 B.a=-,b=-11C.a=,b=-11 D.a=-,b=116.关于的不等式的解集为,且,则()A.3 B.C.2 D.7.设全集,集合,,则=()A. B.{2,5}C.{2,4} D.{4,6}8.当时,在同一平面直角坐标系中,与的图象是()A. B.C. D.9.已知向量,且,则A. B.C. D.10.过原点和直线与的交点的直线的方程为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知是定义在R上的偶函数,且在上单调递减,若(且),则a的取值范围为_____________.12.已知是定义在R上的偶函数,且在区间上单调递增.若实数满足,则的取值范围是______.13.已知函数,若函数有3个零点,则实数a的取值范围是_______.14.已知点是角终边上一点,且,则的值为__________.15.给出下列命题:①存在实数,使;②函数是偶函数;③若是第一象限的角,且,则;④直线是函数的一条对称轴;⑤函数的图像关于点成对称中心图形.其中正确命题序号是__________.16.已知,若,使得,若的最大值为,最小值为,则__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数的图像关于y轴对称(1)求k的值;(2)若此函数的图像在直线上方,求实数b的取值范围(提示:可考虑两者函数值的大小.)18.榴弹炮是一种身管较短,弹道比较弯曲,适合于打击隐蔽目标和地面目标的野战炮,是地面炮兵的主要炮种之一.为中国共产党建党100周年献礼,某军工研究所对某类型榴弹炮进行了改良.如图所示,建立平面直角坐标系,x轴在地平面上,y轴垂直于地平面,单位长度为.改良后的榴弹炮位于坐标原点.已知该炮弹发射后的轨迹在方程表示的曲线上,其中k与发射方向有关.炮的射程是指炮弹落地点的横坐标(1)求该类型榴弹炮的最大射程;(2)证明:该类型榴弹炮发射的高度不会超过19.已知函数.求函数的值域20.已知函数其中.(1)当a=0时,求f(x)的值域;(2)若f(x)有两个零点,求a的取值范围.21.抛掷两颗骰子,计算:(1)事件“两颗骰子点数相同”的概率;(2)事件“点数之和小于7”概率;(3)事件“点数之和等于或大于11”的概率.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】图①的三种视图均相同;图②的正视图与侧视图相同;图③的三种视图均不相同;图④的正视图与侧视图相同.故选D2、B【解析】首先算出的坐标,然后根据建立方程求解即可.【详解】因为所以,因为,所以,所以故选:B3、A【解析】根据三角函数定义求解即可.【详解】角的终边经过点,即,则.故选:A.4、D【解析】将问题转化为与有四个不同的交点,应用数形结合思想判断各交点横坐标的范围及数量关系,即可判断各选项的正误.【详解】有四个不同的零点、、、,即有四个不同的解的图象如下图示,由图知:,所以,即的取值范围是(0,+∞)由二次函数的对称性得:,因为,即,故故选:D【点睛】关键点点睛:将零点问题转化为函数交点问题,应用数形结合判断交点横坐标的范围或数量关系.第II卷5、C【解析】因为,所以,则,故选C6、A【解析】根据一元二次不等式与解集之间的关系可得、,结合计算即可.【详解】由不等式的解集为,得,不等式对应的一元二次方程为,方程的解为,由韦达定理,得,,因为,所以,即,整理,得.故选:A7、D【解析】由补集、交集的定义,运算即可得解.【详解】因为,,所以,又,所以.故选:D.8、B【解析】由定义域和,使用排除法可得.【详解】的定义域为,故AD错误;BC中,又因为,所以,故C错误,B正确.故选:B9、B【解析】由已知得,因为,所以,即,解得.选B10、C【解析】先求出两直线的交点,从而可得所求的直线方程.【详解】由可得,故过原点和交点的直线为即,故选:C.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据偶函数的性质,结合绝对值的性质、对数函数的单调性,分类讨论,求出a的取值范围.【详解】因为已知是定义在R上的偶函数,所以由,又因为上单调递减,所以有.当时,;当时,.故答案为:【点睛】本题考查利用函数的奇偶性和单调性解不等式,考查了对数函数的单调性,考查了数学运算能力.12、【解析】由题意在上单调递减,又是偶函数,则不等式可化为,则,,解得13、(0,1]【解析】先作出函数f(x)图象,根据函数有3个零点,得到函数f(x)的图象与直线y=a有三个交点,结合图象即可得出结果【详解】由题意,作出函数的图象如下:因为函数有3个零点,所以关于x的方程f(x)﹣a=0有三个不等实根;即函数f(x)的图象与直线y=a有三个交点,由图象可得:0<a≤1故答案为:(0,1]【点睛】本题主要考查函数的零点,灵活运用数形结合的思想是求解的关键14、【解析】由三角函数定义可得,进而求解即可【详解】由题,,所以,故答案为:【点睛】本题考查由三角函数值求终边上的点,考查三角函数定义的应用15、④⑤【解析】根据两角和与差的正弦公式可得到sinα+cosαsin(α)结合正弦函数的值域可判断①;根据诱导公式得到=sinx,再由正弦函数的奇偶性可判断②;举例说明该命题正误可判断③;x代入到y=sin(2xπ),根据正弦函数的对称性可判断④;x代入到,根据正切函数的对称性可判断⑤.【详解】对于①,sinα+cosαsin(α),故①错误;对于②,=sinx,其为奇函数,故②错误;对于③,当α、β时,α、β是第一象限的角,且α>β,但sinα=sinβ,故③错误;对于④,x代入到y=sin(2xπ)得到sin(2π)=sin1,故命题④正确;对于⑤,x代入到得到tan()=0,故命题⑤正确.故答案为④⑤【点睛】本题考查了三角函数的图象与性质的应用问题,也考查了三角函数的化简与求值问题,是综合性题目16、【解析】作出函数的图像,计算函数的对称轴,设,数形结合判断得时,取最小值,时,取最大值,再代入解析式从而求解出另外两个值,从而得和,即可求解.【详解】作出函数的图像如图所示,令,则函数的对称轴为,由图可知函数关于,,对称,设,则当时,取最小值,此时,可得,故;当时,取最大值,此时,可得,故,所以.故答案为:【点睛】解答该题的关键是利用数形结合,利用三角函数的对称性与周期性判断何时取得最大值与最小值,再代入计算.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据函数是偶函数,结合偶函数的定义,求参数的值;(2)由题意可知恒成立,分离参数后可得,转化求函数的值域,即可求得的取值范围.【小问1详解】,所以,因为函数的图像关于轴对称,函数是偶函数,所以,即,解得:;【小问2详解】,由题意可知,恒成立,即,转化为,令,函数的值域是,所以.18、(1)(2)证明见解析【解析】(1)解一元二次方程即可求得该类型榴弹炮的最大射程;(2)以二次函数在给定区间求值域的方法去解决即可.【小问1详解】令,得,由实际意义和题设条件知,故,(当且仅当时取等号)所以炮的最大射程为;【小问2详解】,由,可知因此,所以该类型榴弹炮发射的高度不会超过19、【解析】将化为,分和分别应用均值不等式可得答案.【详解】解:,当时,,当且仅当,即时取等号;当时,,当且仅当,即时取等号综上所述,的值域为20、(1);(2)【解析】(1)分别求出和的值域即可;(2)分两种情况讨论,若,有1个零点,时,有1个零点;若,无零点,时,有2个零点.【详解】(1)当时,,则当时,,当时,单调递增,则,综上,的值域为;(2)当时,,当时,单调递增,若,有1个零点,则,则时,也应有1个零点,所以,又,则;若,无零点,则,则时,有2个零点,所以;综上,a的取值范围为.21、(1);(2);(3)【解析】(1)根据所有的基本事件的个数为,而所得点数相同的情况有种,从而求得事件“两颗骰子点数相同”的概率;(2)根据所有的基本事件的个数,求所求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 边境安全课件
- 车险销售培训课件教学
- 车队进藏安全培训总结课件
- 煤矿压力管路的全面排查方案
- 车队夏季安全培训课件
- 保安员证考试题库(OCR)
- 银行合规管理制度修订
- 车间班组级安全培训记录课件
- 车间工艺安全培训总结课件
- 车间安全看板模板培训课件
- 西方经济学题库1
- 2024-2025学年四川省成都市蓉城名校联盟高一上学期期中语文试题及答案
- 修复胃黏膜的十大中药
- 手术中输血制度
- 小学二年级上学期数学无纸化试题(共3套)
- 外研版小学英语(三起点)六年级上册期末测试题及答案(共3套)
- 林场副场长述职报告
- 24秋国家开放大学《计算机系统与维护》实验1-13参考答案
- 纸样师傅工作总结
- 贵州玄德生物科技股份有限公司年产5000吨生态特色食品(4500L超临界CO2流体萃取)精深加工生产线建设项目环境影响报告
- 2022版初中物理课程标准测试题库(有答案)(物理新课程标准试题教师资格考试教师招聘考试试卷)
评论
0/150
提交评论