2026届四川省广元市万达中学、八二一中学高二数学第一学期期末复习检测模拟试题含解析_第1页
2026届四川省广元市万达中学、八二一中学高二数学第一学期期末复习检测模拟试题含解析_第2页
2026届四川省广元市万达中学、八二一中学高二数学第一学期期末复习检测模拟试题含解析_第3页
2026届四川省广元市万达中学、八二一中学高二数学第一学期期末复习检测模拟试题含解析_第4页
2026届四川省广元市万达中学、八二一中学高二数学第一学期期末复习检测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届四川省广元市万达中学、八二一中学高二数学第一学期期末复习检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设,,则与的等比中项为()A. B.C. D.2.已知,则的大小关系为()A. B.C. D.3.如果命题为真命题,为假命题,那么()A.命题,都是真命题 B.命题,都是假命题C.命题,至少有一个是真命题 D.命题,只有一个是真命题4.如图,两个半径为R的相交大圆,分别内含一个半径为r的同心小圆,且同心小圆均与另一个大圆外切.已知时,在两相交大圆的区域内随机取一点,则该点取自两大圆公共部分的概率为()A. B.C. D.5.若直线的一个方向向量为,直线的一个方向向量为,则直线与所成的角为()A30° B.45°C.60° D.90°6.窗花是贴在窗纸或窗户玻璃上的剪纸,是古老的传统民间艺术之一.如图是一个窗花的图案,以正六边形各顶点为圆心、边长为半径作圆,阴影部分为其公共部分.现从该正六边形中任取一点,则此点取自于阴影部分的概率为()A. B.C. D.7.“不到长城非好汉,屈指行程二万”,出自毛主席1935年10月所写的一首词《清平乐·六盘山》,反映了中华民族的一种精神气魄,一种积极向上的奋斗精神.从数学逻辑角度分析,其中“好汉”是“到长城”的()A.充分条件 B.必要条件C.充要条件 D.既不充分也不必要条件8.程大位是明代著名数学家,他的《新编直指算法统宗》是中国历史上一部影响巨大的著作.它问世后不久便风行宇内,成为明清之际研习数学者必读的教材,而且传到朝鲜、日本及东南亚地区,对推动汉字文化圈的数学发展起了重要的作用.卷八中第33问是:“今有三角果一垛,底阔每面七个.问该若干?”如图是解决该问题的程序框图.执行该程序框图,求得该垛果子的总数为()A.120 B.84C.56 D.289.为了解青少年视力情况,统计得到名青少年的视力测量值(五分记录法)的茎叶图,其中茎表示个位数,叶表示十分位数,则该组数据的中位数是()A. B.C. D.10.用数学归纳法证明“”的过程中,从到时,不等式的左边增加了()A. B.C. D.11.在中,三个内角A,B,C的对边分别为a,b,c,若,,,则的面积为()A. B.1C. D.212.已知椭圆的左、右焦点分别为,过的直线与椭圆C相交P,Q两点,若,且,则椭圆C的离心率为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.底面半径为1,母线长为2的圆锥的体积为______14.某教师组织本班学生开展课外实地测量活动,如图是要测山高.现选择点A和另一座山顶点C作为测量观测点,从A测得点M的仰角,点C的仰角,测得,,已知另一座山高米,则山高_______米.15.若圆锥的轴截面是顶角为的等腰三角形,且圆锥的侧面积为,则该圆锥的体积为______.16.已知数列的前项和.则数列的通项公式为_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AD//BC,AB=BC=CD=1,AD=2,直线BC与平面PCD所成角的正弦值为.(1)求证:平面PCD⊥平面PAC;(2)求平面PAB与平面PCD所成锐二面角的余弦值.18.(12分)已知点到两个定点的距离比为(1)求点的轨迹方程;(2)若过点的直线被点的轨迹截得的弦长为,求直线的方程19.(12分)等差数列{an}的前n项和记为Sn,且.(1)求数列{an}的通项公式an(2)记数列的前n项和为Tn,若,求n的最小值.20.(12分)已知双曲线C:(a>0,b>0)的离心率为,实轴长为2.(1)求双曲线的焦点到渐近线的距离;(2)若直线y=x+m被双曲线C截得的弦长为,求m的值.21.(12分)已知抛物线的焦点为,且为圆的圆心.过点的直线交抛物线与圆分别为,,,(从上到下)(1)求抛物线方程并证明是定值;(2)若,的面积比是,求直线的方程22.(10分)已知数列满足(1)求数列的通项公式;(2)是否存在正实数a,使得不等式对一切正整数n都成立?若存在,求出a的取值范围;若不存在,请说明理由.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】利用等比中项的定义可求得结果.【详解】由题意可知,与的等比中项为.故选:C.2、B【解析】构造利用导数判断函数在上单调递减,利用单调性比较大小【详解】设恒成立,函数在上单调递减,.故选:B3、D【解析】由命题为真命题,可判断二者至少有一个为真命题,由为假命题,可判断二者至少有一个为假命题,由此可得答案.【详解】命题为真命题,说明二者至少有一个为真命题,为假命题,说明二者至少有一个为假命题,综合上述,可知命题,只有一个是真命题,故选:D4、C【解析】设D为线段AB的中点,求得,在中,可得.进而求得两大圆公共部分的面积为:,利用几何概型计算即可得出结果.【详解】如图,设D为线段AB的中点,,在中,.两大圆公共部分的面积为:,则该点取自两大圆公共部分的概率为.故选:C.5、C【解析】直接由公式,计算两直线的方向向量的夹角,进而得出直线与所成角的大小【详解】因为,,所以,所以,所以直线与所成角的大小为故选:C6、D【解析】求得阴影部分的面积,结合几何概型概率计算公式,计算出所求的概率.【详解】设正六边形的边长为,则其面积为.阴影部分面积为,故所求概率为.故选:D7、A【解析】根据充分条件和必要条件的定义进行判断即可【详解】解:设为不到长城,推出非好汉,即,则,即好汉到长城,故“好汉”是“到长城”的充分条件,故选:A8、B【解析】按照框图中程序,逐步执行循环,即可求得答案.【详解】第一次循环:,,第二次循环:,,第三次循环:,,第四次循环:,,第五次循环:,,第六次循环:,,第七次循环:,,退出循环,输出.故选:B9、B【解析】将样本中的数据由小到大进行排列,利用中位数的定义可得结果.【详解】将样本中的数据由小到大进行排列,依次为:、、、、、、、、、,因此,这组数据的中位数为.故选:B.10、B【解析】依题意,由递推到时,不等式左边为,与时不等式的左边作差比较即可得到答案【详解】用数学归纳法证明等式的过程中,假设时不等式成立,左边,则当时,左边,∴从到时,不等式的左边增加了故选:B11、C【解析】由余弦定理求出,利用正弦定理将边化角,再根据二倍角公式得到,即可得到,最后利用面积公式计算可得;【详解】解:因为,又,所以,因为,所以,所以,因为,所以,即,所以或,即或(舍去),所以,因为,所以,所以;故选:C12、B【解析】设,由椭圆的定义及,结合勾股定理求参数m,进而由勾股定理构造椭圆参数的齐次方程求离心率.【详解】设,椭圆的焦距为,则,由,有,解得,所以,故得:故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】先由勾股定理求圆锥的高,再结合圆锥的体积公式运算即可得解.【详解】解:设圆锥的高为,由勾股定理可得,由圆锥的体积可得,故答案为.【点睛】本题考查了圆锥的体积公式,重点考查了勾股定理,属基础题.14、【解析】利用正弦定理可求出各个三角形的边长,进而求出山高.【详解】解:在中,,,,可得在中,,所以由正弦定理可得:即,得在直角中,所以故答案为:.15、【解析】设圆锥的高为,可得出圆锥的母线长为,以及圆锥的底面半径为,利用圆锥的侧面积公式求出的值,再利用锥体的体积公式可求得结果.【详解】设圆锥的高为,由于圆锥的轴截面是顶角为的等腰三角形,则轴截面三角形的底角为,故该圆锥的母线长为,底面半径为,圆锥的侧面积为,可得,因此,该圆锥的体积为.故答案为:.16、【解析】根据公式求解即可.【详解】解:当时,当时,因为也适合此等式,所以.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】(1)取的中点,连接,证明,由线面垂直的判定定理可证明平面,再利用面面垂直的判定定理可证得结论,(2)过点作于,以为原点,建立空间直角坐标系,如图所示,设,先根据直线BC与平面PCD所成角的正弦值为,求出,然后再求出平面PAB的法向量,利用向量的夹角公式可求得结果【小问1详解】证明:取的中点,连接,因为AD//BC,AB=BC=CD=1,AD=2,所以,∥,所以四边形为平行四边形,所以,所以,因为平面,平面,所以,因为,所以平面,因为平面,所以平面平面,【小问2详解】过点作于,以为原点,建立空间直角坐标系,如图所示,在等腰梯形中,AD//BC,AB=BC=CD=1,AD=2,则,所以设因为平面,所以所以,设平面的法向量为,则,令,则,因为直线BC与平面PCD所成角的正弦值为,所以,解得,所以,,设平面的法向量为,因为,所以,令,则,所以,所以平面PAB与平面PCD所成锐二面角的余弦值为18、(1)(2)或【解析】(1)设出,表达出,直接法求出轨迹方程;(2)在第一问的基础上,先考虑直线斜率不存在时是否符合要求,再考虑斜率存在时,设出直线方程,表达出圆心到直线的距离,利用垂径定理列出方程,求出直线方程.【小问1详解】设,则,,故,两边平方得:【小问2详解】当直线斜率不存在时,直线为,此时弦长为,满足题意;当直线斜率存在时,设直线,则圆心到直线距离为,由垂径定理得:,解得:,此时直线的方程为,综上:直线的方程为或.19、(1)an=2n(2)100【解析】(1)由等差数列的通项公式列出方程组求解即可;(2)由裂项相消求和法得出,再由不等式的性质得出n的最小值.【小问1详解】设等差数列{an}的公差为d,依题意有解得,所以an=2n.【小问2详解】由(1)得,则,所以因为,即,解得n>99,所以n的最小值为100.20、(1)(2)【解析】(1)根据已知计算双曲线的基本量,得双曲线焦点坐标及渐近线方程,再用点到直线距离公式得解.(2)直线方程代入双曲线方程,得到关于的一元二次方程,运用韦达定理弦长公式列方程得解.【小问1详解】双曲线离心率为,实轴长为2,,,解得,,,所求双曲线C的方程为;∴双曲线C的焦点坐标为,渐近线方程为,即为,∴双曲线焦点到渐近线的距离为.【小问2详解】设,,联立,,,,,,解得21、(1),证明见解析(2)【解析】(1)根据,结合韦达定理即可获解(2),再结合焦点弦公式即可获解【小问1详解】由题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论