湖南省浏阳一中、株洲二中等湘东七校2026届数学高二上期末质量跟踪监视试题含解析_第1页
湖南省浏阳一中、株洲二中等湘东七校2026届数学高二上期末质量跟踪监视试题含解析_第2页
湖南省浏阳一中、株洲二中等湘东七校2026届数学高二上期末质量跟踪监视试题含解析_第3页
湖南省浏阳一中、株洲二中等湘东七校2026届数学高二上期末质量跟踪监视试题含解析_第4页
湖南省浏阳一中、株洲二中等湘东七校2026届数学高二上期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省浏阳一中、株洲二中等湘东七校2026届数学高二上期末质量跟踪监视试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知分别是等差数列的前项和,且,则()A. B.C. D.2.已知双曲线的一个焦点到它的一条渐近线的距离为,则()A.5 B.25C. D.3.过点且与原点距离最大的直线方程是()A. B.C. D.4.已知抛物线,过点与抛物线C有且只有一个交点的直线有()条A.0 B.1C.2 D.35.设、是向量,命题“若,则”的逆否命题是()A.若,则 B.若,则C.若,则 D.若,则6.已知直线交圆于A,B两点,若点满足,则直线l被圆C截得线段的长是()A.3 B.2C. D.47.抛物线的准线方程是,则a的值为()A.4 B.C. D.8.直三棱柱ABC-A1B1C1中,△ABC为等边三角形,AA1=AB,M是A1C1的中点,则AM与平面所成角的正弦值为()A. B.C. D.9.圆与圆的位置关系为()A.内切 B.相交C.外切 D.外离10.已知长方体的底面ABCD是边长为4的正方形,长方体的高为,则与对角面夹角的正弦值等于()A. B.C. D.11.若、、为空间三个单位向量,,且与、所成的角均为,则()A.5 B.C. D.12.如图,一个圆锥形的空杯子上面放着一个半径为4.5cm的半球形的冰淇淋,若冰淇淋融化后正好盛满杯子,则杯子的高()A.9cm B.6cmC.3cm D.4.5cm二、填空题:本题共4小题,每小题5分,共20分。13.已知数列前项和为,且,则_______.14.已知双曲线的左、右焦点分别为,双曲线左支上点满足,则的面积为_________15.某学校要从6名男生和4名女生中选出3人担任进博会志愿者,则所选3人中男女生都有的概率为___________.(用数字作答)16.等比数列的各项均为正数,且,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)有三个条件:①数列的任意相邻两项均不相等,,且数列为常数列,②,③,,中,从中任选一个,补充在下面横线上,并回答问题已知数列的前n项和为,______,求数列的通项公式和前n项和18.(12分)各项都为正数的数列的前项和为,且满足.(1)求数列的通项公式;(2)求;(3)设,数列的前项和为,求使成立的的最小值.19.(12分)已知圆,圆心在直线上(1)求圆的标准方程;(2)求直线被圆截得的弦的长20.(12分)已知数列中,数列的前n项和为满足.(1)证明:数列为等比数列;(2)在和中插入k个数构成一个新数列:,2,,4,6,,8,10,12,,…,其中插入的所有数依次构成首项和公差都为2的等差数列.求数列的前50项和.21.(12分)记是等差数列的前项和,若.(1)求数列的通项公式;(2)求使成立的的最小值.22.(10分)已知函数(1)求函数单调区间;(2)函数在区间上的最小值小于零,求a的取值范围

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】利用及等差数列的性质进行求解.【详解】分别是等差数列的前项和,故,且,故,故选:D2、B【解析】由渐近线方程得到,焦点坐标为,渐近线方程为:,利用点到直线距离公式即得解【详解】由题意,双曲线故焦点坐标为,渐近线方程为:焦点到它的一条渐近线的距离为:解得:故选:B3、A【解析】过点且与原点O距离最远的直线垂直于直线,再由点斜式求解即可【详解】过点且与原点O距离最远的直垂直于直线,,∴过点且与原点O距离最远的直线的斜率为,∴过点且与原点O距离最远的直线方程为:,即.故选:A4、D【解析】设出过点与抛物线C只有一个公共点且斜率存在的直线方程,再与的方程联立借助判别式计算、判断作答.【详解】抛物线的对称轴为y轴,直线过点P且与y轴平行,它与抛物线C只有一个公共点,设过点与抛物线C只有一个公共点且斜率存在的直线方程为:,由消去y并整理得:,则,解得或,因此,过点与抛物线C相切的直线有两条,相交且只有一个公共点的直线有一条,所以过点与抛物线C有且只有一个交点的直线有3条.故选:D5、C【解析】利用原命题与逆否命题之间的关系可得结论.【详解】由原命题与逆否命题之间的关系可知,命题“若,则”的逆否命题是“若,则”.故选:C.6、B【解析】由题设知为圆的圆心且A、B在圆上,根据已知及向量数量积的定义求的大小,进而判断△的形状,即可得直线l被圆C截得线段的长.【详解】∵点为圆的圆心且A、B在圆上,又,∴,∴,又,∴,故△为等边三角形,∴直线l被圆C截得线段的长是2故选:B7、C【解析】先求得抛物线的标准方程,可得其准线方程,根据题意,列出方程,即可得答案.【详解】由题意得抛物线的标准方程为,准线方程为,又准线方程是,所以,所以.故选:C8、B【解析】取的中点,以为原点,所在直线分别为x轴、y轴、z轴,建立空间直角坐标系,即可根据线面角的向量公式求出【详解】如图所示,取的中点,以为原点,所在直线分别为x轴、y轴、z轴,建立空间直角坐标系,不妨设,则,所以,平面的一个法向量为设AM与平面所成角为,向量与所成的角为,所以,即AM与平面所成角的正弦值为故选:B9、C【解析】将圆的一般方程化为标准方程,根据圆心距和半径的关系,判断两圆的位置关系.【详解】圆的标准方程为,圆的标准方程为,两圆的圆心距为,即圆心距等于两圆半径之和,故两圆外切,故选:C.10、C【解析】建立空间直角坐标系,结合空间向量的夹角坐标公式即可求出线面角的正弦值.【详解】连接,建立如图所示的空间直角坐标系∵底面是边长为4的正方形,,∴,,,因为,,且,所以平面,∴,平面的法向量,∴与对角面所成角的正弦值为故选:C.11、C【解析】先求的平方后再求解即可.【详解】,故,故选:C12、A【解析】根据圆锥和球的体积公式以及半球的体积等于圆锥的体积,即可列式解出【详解】由题意可得,,解得.故选:A二、填空题:本题共4小题,每小题5分,共20分。13、,.【解析】由的递推关系,讨论、求及,注意验证是否满足通项,即可写出的通项公式.【详解】当时,,当且时,,而,即也满足,∴,.故答案为:,.14、3【解析】由双曲线方程可得,利用双曲线定义,以及直角三角形的勾股定理可得,由此求得答案.【详解】由双曲线的左、右焦点分别为,双曲线左支上点满足,可得:,则,且,故,所以,故,故答案为:315、##0.8【解析】由排列组合知识求得所选3人中男女生都有方法数及总的选取方法数后可计算概率【详解】从6名男生和4名女生中选出3人的方法数是,所选3人中男女生都有的方法数为,所以概率为故答案为:16、10【解析】由等比数列的性质可得,再利用对数的性质可得结果【详解】解:因为等比数列的各项均为正数,且,所以,所以故答案为:10三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、;【解析】选①,由数列为常数列可得,由此可求,根据任意相邻两项均不相等可得,由此证明数列为等比数列,并求出数列的通项公式,利用分组求和法求数列的前n项和为,选②由取可求,再取与原式相减可得,由此证明数列为等比数列,并求出数列的通项公式,利用分组求和法求数列的前n项和为,选③由取与原式相减可得,取可求,由此可得,故,由此证明数列为等比数列,并求出数列的通项公式,利用分组求和法求数列的前n项和为,【详解】解:选①:因为,数列为常数列,所以,解得或,又因为数列的任意相邻两项均不相等,且,所以数列为2,-1,2,-1,2,-1……,所以,即,所以,又,所以是以为首项,公比为-1的等比数列,所以,即;所以选②:因为,易知,,所以两式相减可得,即,以下过程与①相同;选③:由,可得,又,时,,所以,因为,所以也满足上式,所以,即,以下过程与①相同18、(1)(2)(3)【解析】(1)直接利用数列的递推关系式,结合等差数列的定义,即可求得数列的通项公式;(2)化简,结合裂项相消法求出数列的和;(3)利用分组法求得,结合,即可求得的最小值.【小问1详解】解:因为各项都为正数的数列的前项和为,且满足,当时,解得;当时,;两式相减可得,整理得(常数),故数列是以2为首项,2为公差的等差数列;所以.【小问2详解】解:由,可得,所以,所以.【小问3详解】解:由,可得,所以当为偶数时,,因为,且为偶数,所以的最小值为48;当为奇数时,,不存在最小的值,故当为48时,满足条件.19、(1);(2)【解析】(1)由圆的一般式方程求出圆心代入直线即可求出得值,即可求解;(2)先计算圆心到直线的距离,利用即可求弦长.【详解】(1)由圆,可得所以圆心为,半径又圆心在直线上,即,解得所以圆的一般方程为,故圆的标准方程为(2)由(1)知,圆心,半径圆心到直线的距离则直线被圆截得的弦的长为所以,直线被圆截得弦的长为【点睛】方法点睛:圆的弦长的求法(1)几何法,设圆的半径为,弦心距为,弦长为,则;(2)代数法,设直线与圆相交于,,联立直线与圆的方程,消去得到一个关于的一元二次方程,从而可求出,,根据弦长公式,即可得出结果.20、(1)证明见解析;(2)2735.【解析】(1)利用给定的递推公式结合“当时,”计算推理作答.(2)插入所有项构成数列,,再确定数列的前50项中含有数列和的项数计算作答.【小问1详解】依题意,,当时,,两式相减得:,则有,而,即,所以数列是以2为首项,2为公式的等比数列.【小问2详解】由(1)知,,即,插入的所有项构成数列,,数列中前插入数列的项数为:,而前插入数列的项数为45,因此,数列的前50项中包含数列前9项,数列前41项,所以.21、(1)(2)4【解析】(1)根据题意得,解方程得,进而得通项公式;(2)由题知,进而解不等式得或,再根据即可得答案.【小问1详解】设等差数列的公差为,由得=0,由题意知,,解得,所以d=2所以.小问2详解】解:由(1)可得,由可得,即,解得或,因为,所以,正整数的最小值为.22、(1)答

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论