版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁省凌源市第二中学2026届高二上数学期末教学质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.抛物线上点的横坐标为4,则到抛物线焦点的距离等于()A.12 B.10C.8 D.62.已知F是双曲线的右焦点,过F且垂直于x轴的直线交E于A,B两点,若E的渐近线上恰好存在四个点,,,,使得,则E的离心率的取值范围是()A. B.C. D.3.已知双曲线C:(,)的一条渐近线被圆所截得的弦长为2,的C的离心率为()A. B.C.2 D.4.渐近线方程为的双曲线的离心率是()A.1 B.C. D.25.设函数是定义在上的奇函数,且,当时,有恒成立.则不等式的解集为()A. B.C. D.6.在空间直角坐标系中,点关于轴对称的点的坐标为()A. B.C. D.7.函数的图像在点处的切线方程为()A. B.C. D.8.传说古希腊毕达哥拉斯学派的数学家用沙粒和小石子研究数,他们根据沙粒和石子所排列的形状把数分成许多类,若:三角形数、、、、,正方形数、、、、等等.如图所示为正五边形数,将五边形数按从小到大的顺序排列成数列,则此数列的第4项为()A. B.C. D.9.在△ABC中,角A,B,C所对的边分别是a,b,c,若c=1,B=45°,cosA=,则b等于()A. B.C. D.10.关于的不等式的解集为()A. B.C.或 D.11.已知双曲线,其渐近线方程为,则a的值为()A. B.C. D.212.复数的虚部为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若,满足约束条件,则的最小值为__________14.在棱长为1的正方体中,___________.15.设,若不等式在上恒成立,则的取值范围是______.16.拋物线的焦点坐标为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆C的中心在原点,焦点在x轴上,长轴长为4,且点在椭圆上(1)经过点M(1,)作一直线交椭圆于AB两点,若点M为线段AB的中点,求直线的斜率;(2)设椭圆C的上顶点为P,设不经过点P的直线与椭圆C交于C,D两点,且,求证:直线过定点18.(12分)已知三角形内角所对的边分别为,且C为钝角.(1)求cosA;(2)若,,求三角形的面积.19.(12分)如图,在四棱锥中中,平面ABCD,底面ABCD是边长为2的正方形,.(1)求证:平面;(2)求二面角的平面角的余弦值.20.(12分)圆的圆心为,且与直线相切,求:(1)求圆的方程;(2)过的直线与圆交于,两点,如果,求直线的方程21.(12分)已知正项等比数列的前项和为,满足,.记.(1)求数列的通项公式;(2)设数列前项和,求使得不等式成立的的最小值.22.(10分)唐代诗人李颀的诗《古从军行》开头两句说:“白日登上望烽火,黄昏饮马傍交河,”诗中隐含着一个有趣的“将军饮马”问题,这是一个数学问题,即将军在观望烽火之后从山脚下某处出发,先到河边饮马后再回军营,怎样走才能使得总路程最短?在平面直角坐标系中,将军从点处出发,河岸线所在直线方程为,并假定将军只要到达军营所在区域即为回到军营.军营所在区域可表示为.(1)求“将军饮马”的最短总路程;(2)因军情紧急,将军来不及饮马,直接从A点沿倾斜角为45°的直线路径火速回营,已知回营路径与军营边界的交点为M,N,军营中心与M,N连线的斜率分别为,,试求的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据焦半径公式即可求出【详解】因为,所以,所以故选:C2、D【解析】由题意以AB为直径的圆M与双曲线E的渐近线有四个不同的交点,则必有,又当圆M经过原点时此时以AB为直径的圆M上与双曲线E的渐近线有三个不同的交点,不满足,从而得出答案.【详解】由题意,由得,双曲线的渐近线方程为所以,由,可知,,,在以AB为直径的圆M上,圆的半径为即以AB为直径的圆M与双曲线E的渐近线有四个不同的交点当圆M与渐近线相切时,圆心到渐近线的距离,则必有,即,则双曲线E的离心率,所以又当圆M经过原点时,,解得E的离心率为,此时以AB为直径圆M与双曲线E的渐近线有三个不同的交点,不满足条件.所以E的离心率的取值范围是.故选:D3、C【解析】由双曲线的方程可得渐近线的直线方程,根据直线和圆相交弦长可得圆心到直线的距离,进而可得,结合,可得离心率.【详解】双曲线的一条渐近线方程为,即,被圆所截得的弦长为2,所以圆心到直线的距离为,,解得,故选:C【点睛】本题考查了双曲线的渐近线和离心率、直线和圆的相交弦、点到直线距离等基本知识,考查了运算求解能力和逻辑推理能力,转化的数学思想,属于一般题目.4、B【解析】根据双曲线渐近线方程可确定a,b的关系,进而求得离心率.【详解】因为双曲线近线方程为,故双曲线为等轴双曲线,则a=b,故离心率为,则,故选:B.5、B【解析】根据当时,可知在上单调递减,结合可确定在上的解集;根据奇偶性可确定在上的解集;由此可确定结果.【详解】,当时,,在上单调递减,,,在上的解集为,即在上的解集为;又为上的奇函数,,为上的偶函数,在上的解集为,即在上的解集为;当时,,不合题意;综上所述:的解集为.故选:.【点睛】本题考查利用函数的单调性和奇偶性求解函数不等式的问题,关键是能够通过构造函数的方式,确定所构造函数的单调性和奇偶性,进而根据零点确定不等式的解集.6、B【解析】结合已知条件,利用对称的概念即可求解.【详解】不妨设点关于轴对称的点的坐标为,则线段垂直于轴且的中点在轴,从而点关于轴对称的点的坐标为.故选:B.7、B【解析】求得函数的导数,计算出和的值,可得出所求切线的点斜式方程,化简即可.详解】,,,,因此,所求切线的方程为,即.故选:B.【点睛】本题考查利用导数求解函图象的切线方程,考查计算能力,属于基础题8、D【解析】根据前三个五边形数可推断出第四个五边形数.【详解】第一个五边形数为,第二个五边形数为,第三个五边形数为,故第四个五边形数为.故选:D.9、C【解析】先由cosA的值求出,进而求出,用正弦定理求出b的值.【详解】因为cosA=,所以,所以由正弦定理:,得:.故选:C10、C【解析】求出不等式对应方程的根,结合不等式和二次函数的关系,即可得到结果.【详解】不等式对应方程的两根为,因为,故可得,根据二次不等式以及二次函数的关系可得不等式的解集为或.故选:C.【点睛】本题考查含参二次不等式的求解,属基础题.11、A【解析】由双曲线方程,根据其渐近线方程有,求参数值即可.【详解】由渐近线,结合双曲线方程,∴,可得.故选:A.12、D【解析】直接根据.复数的乘法运算结合复数虚部的定义即可得出答案【详解】解:,所以复数的虚部为.故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】作出线性约束条件的可行域,再利用截距的几何意义求最小值;【详解】约束条件的可行域,如图所示:目标函数在点取得最小值,即.故答案为:14、1【解析】根据向量的加法及向量数量积的运算性质求解.【详解】如图,在正方体中,,故答案为:115、【解析】构造,利用导数求其最大值,结合已知不等式恒成立,即可确定的范围.【详解】令,则且,若得:;若得:;所以在上递增,在上递减,故,要使在上恒成立,即.故答案为:.16、【解析】化成抛物线的标准方程即可.【详解】由题意知,,则焦点坐标为.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)证明见解析.【解析】(1)设椭圆的方程为代入点的坐标求出椭圆的方程,再利用点差法求解;(2)由题得直线的斜率存在,设直线的方程为,联立直线和椭圆的方程得韦达定理,根据和韦达定理得到,即得证.【小问1详解】解:由题设椭圆的方程为因为椭圆经过点,所以所以椭圆的方程为.设,所以,所以,由题得,所以,所以,所以,所以直线的斜率为.【小问2详解】解:由题得当直线的斜率不存在时,不符合题意;当直线的斜率存在时,设直线的方程为,联立方程组y=kx+nx24所以,解得①,设,,,,则②,因为,则,,,又,,所以③,由②③可得(舍或满足条件①,此时直线的方程为,故直线过定点18、(1)(2)【解析】(1)由正弦定理边化角,可求得角的正弦,由同角关系结合条件可得答案.(2)由(1),由余弦定理,求出边的长,进一步求得面积【小问1详解】因为,由正弦定理得因为,所以.因为角为钝角,所以角为锐角,所以小问2详解】由(1),由余弦定理,得,所以,解得或,不合题意舍去,故的面积为=19、(1)证明见解析(2)【解析】(1)根据平面得到,结合得到证明。(2)建立空间直角坐标系,计算各点坐标,计算平面的法向量,根据向量的夹角公式得到答案。【小问1详解】由于平面,平面,所以,由于,又,所以平面【小问2详解】两两垂直,建立如图所示空间直角坐标系,,,,,,设平面的一个法向量为设平面的一个法向量为,由,得,故可取所以所以二面角的平面角的余弦值20、(1)(2)或【解析】由点到直线的距离公式求得圆的半径,则圆的方程可求;当直线的斜率不存在时,求得弦长为,满足题意;当直线的斜率不存在时,设出直线方程,求出圆心到直线的距离,再由垂径定理列式求,则直线方程可求【小问1详解】由题意得:圆的半径为,则圆的方程为;【小问2详解】当直线的斜率不存在时,直线方程为,得,符合题意;当直线的斜率存在时,设直线方程为,即圆心到直线的距离,则,解得直线的方程为直线的方程为或21、(1),.(2)5.【解析】(1)根据数列的递推公式探求出其项间关系,由此求出的公比,进而求得,的通项公式.(2)利用(1)的结论结合错位相减法求出,再将不等式变形,经推理计算得解.【小问1详解】解:设正项等比数列的公比为,当时,,即,则有,即,而,解得,又,则,所以,所以数列,的通项公式分别为:,.【小问2详解】解:由(1)知,,则,则,两式相减得:于是得,由得:,即,令,,显然,,,,,,由,解得,即数列在时是递增的,于是得当时,即,,则,所以不等式成立的n的最小值是5.22、(1);(2).【解析】(1)根据题意
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 某著名企业分公司绩效与薪酬管理咨询项目建议书某著名企业0719
- 医患沟通知识总结2026
- 道路安全教育培训平台课件
- 道路安全培训简报标题大全课件
- 2026年鲁教版四年级语文上册月考试卷含答案
- 道法安全地玩课件
- 2026年度执业药师继续教育公需培训考试题库含答案
- 2025心脏外科PROs评价及恢复量表选择专家共识解读课件
- 辩论相关知识
- 车险承保管理培训课件
- 专题13 三角函数中的最值模型之胡不归模型(原卷版)
- 职高高二语文试卷及答案分析
- 2025届江苏省南通市高三下学期3月二模化学试题(含答案)
- 班主任安全管理分享会
- 消防救援预防职务犯罪
- 毕业论文答辩的技巧有哪些
- 酒店安全风险分级管控和隐患排查双重预防
- 2018年风电行业事故锦集
- 一体化泵站安装施工方案
- 《重点新材料首批次应用示范指导目录(2024年版)》
- 防水班组安全晨会(班前会)
评论
0/150
提交评论