版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁省阜新市海州高级中学2026届高二上数学期末质量检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在等差数列{an}中,a1=2,a5=3a3,则a3等于()A.-2 B.0C.3 D.62.若,则x的值为()A.4 B.6C.4或6 D.83.已知抛物线的焦点为,抛物线的焦点为,点在上,且,则直线的斜率为A. B.C. D.4.已知抛物线的焦点与椭圆的一个焦点重合,过坐标原点作两条互相垂直的射线,,与分别交于,则直线过定点()A. B.C. D.5.过点且平行于直线的直线方程为()A. B.C. D.6.已知抛物线的焦点为,过点的直线交抛物线于,两点,则的取值范围是()A. B.C. D.7.已知数列是等比数列,,数列是等差数列,,则的值是()A. B.C. D.8.设异面直线、的方向向量分别为,,则异面直线与所成角的大小为()A. B.C. D.9.在等比数列中,,,则()A. B.或C. D.或10.某地为响应总书记关于生态文明建设的号召,大力开展“青山绿水”工程,造福于民,拟对该地某湖泊进行治理,在治理前,需测量该湖泊的相关数据.如图所示,测得角∠A=23°,∠C=120°,米,则A,B间的直线距离约为(参考数据)()A.60米 B.120米C.150米 D.300米11.如果,,那么直线不经过的象限是()A.第一象限 B.第二象限C.第三象限 D.第四象限12.某手机上网套餐资费:每月流量500M以下(包含500M),按20元计费;超过500M,但没超过1000M(包含1000M)时,超出部分按0.15元/M计费;超过1000M时,超出部分按0.2元/M计费,流量消费累计的总流量达到封顶值(15GB)则暂停当月上网服务.若小明使用该上网套餐一个月的费用是100元,则他的上网流量是()A.800M B.900MC.1025M D.1250M二、填空题:本题共4小题,每小题5分,共20分。13.从1,2,3,4,5中任取两个不同的数,其中一个作为对数的底数a,另一个作为对数的真数b.则的概率为______.14.已知曲线,则曲线在点处的切线方程为______15.已知球的半径为3,则该球的体积为_________.16.已知函数是上的奇函数,,对,成立,则的解集为_________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的左右焦点分别为,,经过左焦点的直线与椭圆交于A,B两点(异于左右顶点)(1)求△的周长;(2)求椭圆E上的点到直线距离的最大值18.(12分)已知等差数列的前n项和为Sn,S9=81,,求:(1)Sn;(2)若S3、、Sk成等比数列,求k19.(12分)设数列的前项和为,为等比数列,且,(1)求数列和的通项公式;(2)设,求数列的前项和20.(12分)已知抛物线C:焦点F的横坐标等于椭圆的离心率.(1)求抛物线C的方程;(2)过(1,0)作直线l交抛物线C于A,B两点,判断原点与以线段AB为直径的圆的位置关系,并说明理由.21.(12分)已知,,其中.(1)求的值;(2)设(其中、为正整数),求的值.22.(10分)已知某电器市场由甲、乙、丙三家企业占有,其中甲厂产品的市场占有率为40%,乙厂产品的市场占有率为36%,丙厂产品的市场占有率为24%,甲、乙、丙三厂产品的合格率分别为,,(1)现从三家企业的产品中各取一件抽检,求这三件产品中恰有两件合格的概率;(2)现从市场中随机购买一台该电器,则买到的是合格品的概率为多少?
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】利用已知条件求得,由此求得.【详解】a1=2,a5=3a3,得a1+4d=3(a1+2d),即d=-a1=-2,所以a3=a1+2d=-2.故选:A.2、C【解析】根据组合数的性质可求解.【详解】,或,即或.故选:C3、B【解析】根据抛物线的定义,求得p的值,即可得抛物线,的标准方程,求得抛物线的焦点坐标后,再根据斜率公式求解.【详解】因为,所以,解得,所以直线的斜率为.故选B.【点睛】本题考查了抛物线的定义的应用,考查了抛物线的简单性质,涉及了直线的斜率公式;抛物线上的点到焦点的距离等于其到准线的距离;解题过程中注意焦点的位置.4、A【解析】由椭圆方程可求得坐标,由此求得抛物线方程;设,与抛物线方程联立可得韦达定理的形式,根据可得,由此构造方程求得,根据直线过定点的求法可求得定点.【详解】由椭圆方程知其焦点坐标为,又抛物线焦点,,解得:,则抛物线的方程为,由题意知:直线斜率不为,可设,由得:,则,即,设,,则,,,,,解得:或;又与坐标原点不重合,,,当时,,直线恒过定点.故选:A.【点睛】思路点睛:本题考查直线与抛物线综合应用中的直线过定点问题的求解,求解此类问题的基本思路如下:①假设直线方程,与抛物线方程联立,整理为关于或的一元二次方程的形式;②利用求得变量的取值范围,得到韦达定理的形式;③利用韦达定理表示出已知中的等量关系,代入韦达定理可整理得到变量间的关系,从而化简直线方程;④根据直线过定点的求解方法可求得结果.5、A【解析】设直线的方程为,代入点的坐标即得解.【详解】解:设直线的方程为,把点坐标代入直线方程得.所以所求的直线方程为.故选:A6、B【解析】当直线斜率存在时,设直线方程,联立方程组,结合根与系数关系可得,进而求得取值范围,当斜率不存在是,可得,两点坐标,进而可得的值.【详解】当直线斜率存在时,设直线方程为,,,联立方程,得,恒成立,则,,,,,所以,当直线斜率不存在时,直线方程为,所以,,,综上所述:,故选:B.7、B【解析】根据等差数列和等比数列下标和的性质即可求解.【详解】为等比数列,,,,;为等差数列,,,,,∴.故选:B.8、C【解析】利用空间向量夹角的公式直接求解.【详解】,,,.由异面直线所成角的范围为,故异面直线与所成的角为.故选:C9、C【解析】计算出等比数列的公比,即可求得的值.【详解】设等比数列的公比为,则,则,所以,.故选:C.10、C【解析】应用正弦定理有,结合已知条件即可求A,B间的直线距离.【详解】由题设,,在△中,,即,所以米.故选:C11、A【解析】将直线化为,结合已知条件即可判断不经过的象限.【详解】由题设,直线可写成,又,,∴,,故直线过二、三、四象限,不过第一象限.故选:A.12、C【解析】根据已知条件列方程,化简求得小明的上网流量.【详解】显然小明上网流量超过了1000M但远远没达到封顶值,假设超出部分为M,由得.故选:C二、填空题:本题共4小题,每小题5分,共20分。13、##【解析】利用列举法,结合古典概型概率计算公式以及对数的知识求得正确答案.【详解】的所有可能取值为,,共种,满足的为,,共种,所以的概率为.故答案为:14、【解析】利用导数求出切线的斜率即得解.【详解】解:由题得,所以切线的斜率为,所以切线的方程为即.故答案为:15、【解析】根据球的体积公式计算可得;【详解】解:因为球的半径,所以球的体积;故答案为:16、【解析】根据题意可以设,求其导数可知在上的单调性,由是上的奇函数,可知的奇偶性,进而可知在上的单调性,由可知的零点,最后分类讨论即可.【详解】设,则对,,则在上为单调递增函数,∵函数是上的奇函数,∴,∴,∴偶函数,∴在上为单调递减函数,又∵,∴,由已知得,所以当时,;当时,;当时,;当时,;若,则;若,则或,解得或或;则的解集为.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)利用椭圆的定义求△的周长;(2)设直线与椭圆相切,联立方程求参数m,与之间的距离的最大值,即为椭圆E上的点到直线l距离的最大值.【小问1详解】已知椭圆E方程为,所以,△的周长为,其中,所以△的周长为.【小问2详解】设直线与直线l平行且与椭圆相切,则,得,即,令,解得,所以,与之间的距离,即椭圆E上的点到直线l距离的最大值为18、(1)Sn=n2(2)11【解析】(1)由等差数列前n项和公式与下标和性质先求,然后结合可解;(2)由(1)中结论和已知列方程可解.【小问1详解】由,解得,又∵,∴,,∴【小问2详解】∵S3,S17–S16,Sk成等比数列,∴S3Sk=(S17–S16)2=,即9k2=332,解得:k=1119、(1),;(2)【解析】(1)由已知利用递推公式,可得,代入分别可求数列的首项,公比,从而可求.(2)由(1)可得,利用乘“公比”错位相减法求和【详解】解:(1)当时,,当时,满足上式,故的通项式为设的公比为,由已知条件知,,,所以,,即(2),两式相减得:【点睛】本题考查等差数列、等比数列的求法,错位相减法求数列通项,属于中档题.20、(1);(2)原点在以线段AB为直径的圆上,详见解析.【解析】(1)利用椭圆方程可得其离心率,进而可求抛物线的焦点,即求;(2)设直线l的方程为,联立抛物线方程,利用韦达定理法可得,即得.【小问1详解】由椭圆,可得,故,∴抛物线C的方程为.【小问2详解】由题可设直线l的方程为,由,得,设,则,又,故,∴,∴,即,故原点在以线段AB为直径的圆上.21、(1);(2).【解析】(1),,写出的展开式通项,由可得出关于的方程,解出的值,再利用赋值法可求得所求代数式的值;(2)写出的展开式,求出、的值,即可求得的值.【小问1详解】解:设,,的展开式通项为,所以,,即,,解得,所以,.【小问2详解】解:,,,因此,22、(1)(2)【解析】(1)由
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年兴仁市人民医院长期人才引进备考题库及完整答案详解1套
- 2026年国家电投集团甘肃电力有限公司招聘备考题库及1套参考答案详解
- 2026年成都传媒集团人力资源服务中心关于综合事业部经理等岗位的招聘19人备考题库参考答案详解
- 2026年临汾市尧都区幼儿园教师招聘备考题库完整参考答案详解
- 2026年华电甘肃能源有限公司所属基层企业面向华电系统内外公开招聘的备考题库含答案详解
- 2026年光明食品(集团)有限公司招聘备考题库及完整答案详解一套
- 2026年安溪县第五小学招聘合同制教师备考题库含答案详解
- 2026年留疆战士考试模拟试题及解析
- 2026年菲涅尔衍射与夫琅禾费衍射试题含答案
- 2026年化工安全操作核心规范自测题库含答案
- 医院18类常用急救药品规格清单
- 斜弱视眼科学
- 电商平台需求规格说明书-通用版本
- GB/T 3372-2010拖拉机和农业、林业机械用轮辋系列
- 北京城市旅游故宫红色中国风PPT模板
- 经济学原理 第一章课件
- 安川伺服说明书
- 社会组织管理概论全套ppt课件(完整版)
- 酒精度检测原始记录
- 冷渣机检修工艺
- 建筑风水学培训
评论
0/150
提交评论