2026届河南省许昌市示范初中高二上数学期末检测模拟试题含解析_第1页
2026届河南省许昌市示范初中高二上数学期末检测模拟试题含解析_第2页
2026届河南省许昌市示范初中高二上数学期末检测模拟试题含解析_第3页
2026届河南省许昌市示范初中高二上数学期末检测模拟试题含解析_第4页
2026届河南省许昌市示范初中高二上数学期末检测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届河南省许昌市示范初中高二上数学期末检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.杨辉三角是二项式系数在三角形中的一种几何排列,在中国南宋数学家杨辉1261年所著的《详解九章算法》一书中就有出现.在欧洲,帕斯卡(1623~1662)在1654年发现这一规律,比杨辉要迟了393年.如图所示,在“杨辉三角”中,从1开始箭头所指的数组成一个锯齿形数列:1,2,3,3,6,4,10,5,…,则在该数列中,第37项是A.153 B.171C.190 D.2102.若某群体中成员只用现金支付的概率为,既用现金支付也用非现金支付的概率为,则不用现金支付的概率为()A. B.C. D.3.若存在,使得不等式成立,则实数k的取值范围为()A. B.C. D.4.经过两点直线的倾斜角是()A. B.C. D.5.设变量x,y满足约束条件则目标函数的最小值为()A.3 B.1C.0 D.﹣16.如图,已知,分别是椭圆的左、右焦点,现以为圆心作一个圆恰好经过椭圆的中心并且交椭圆于点,.若过点的直线是圆的切线,则椭圆的离心率为()A. B.C. D.7.“”是“方程是圆的方程”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件8.“且”是“方程表示椭圆”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件9.命题“存在,使得”的否定为()A.存在, B.对任意,C.对任意, D.对任意,10.命题P:ax2+2x﹣1=0有实数根,若¬p是假命题,则实数a的取值范围是()A.{a|a<1} B.{a|a≤﹣1}C.{a|a≥﹣1} D.{a|a>﹣1}11.设等差数列的前n项和为,若,,则()A.60 B.80C.90 D.10012.抛物线的焦点到直线的距离()A. B.C.1 D.2二、填空题:本题共4小题,每小题5分,共20分。13.某中学高三(2)班甲,乙两名同学自高中以来每次考试成绩的茎叶图如图所示,则甲的中位数与乙的极差的和为___________.14.若正实数满足则的最小值为________________________15.已知三个数2,,6成等比数列,则实数______16.在区间上随机取1个数,则取到的数小于2的概率为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,底面为直角梯形,平面平面,,.(1)证明:平面;(2)已知,,,且直线与平面所成角的正弦值为,求平面与平面夹角的余弦值.18.(12分)已知数列满足,.(1)求数列的通项公式;(2)记,其中表示不超过最大整数,如,.(i)求、、;(ii)求数列的前项的和.19.(12分)已知椭圆C与椭圆有相同的焦点,且离心率为.(1)椭圆C的标准方程;(2)若椭圆C的两个焦点,P是椭圆上的点,且,求的面积.20.(12分)已知点在抛物线()上,过点A且斜率为1直线与抛物线的另一个交点为B(1)求p的值和抛物线的焦点坐标;(2)求弦长21.(12分)在四棱锥中,平面,底面是边长为2的菱形,分别为的中点.(1)证明:平面;(2)求三棱锥的体积.22.(10分)在中,已知,,,,分别为边,的中点,于点.(1)求直线方程;(2)求直线的方程.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据“杨辉三角”找出数列1,2,3,3,6,4,10,5,…之间的关系即可。【详解】由题意可得从第3行起的每行第三个数:,所以第行的第三个数为在该数列中,第37项为第21行第三个数,所以该数列的第37项为故选:C【点睛】本题主要考查了归纳、推理的能力,属于中等题。2、A【解析】利用对立事件的概率公式可求得所求事件的概率.【详解】由对立事件概率公式可知,该群体中的成员不用现金支付的概率为.故选:A.3、C【解析】根据题意和一元二次不等式能成立可得对于,成立,令,利用导数讨论函数的单调性,即可求出.【详解】存在,不等式成立,则,能成立,即对于,成立,令,,则,令,所以当,单调递增,当,单调递减,又,所以f(x)>-3,所以.故选:C4、B【解析】求出直线的斜率后可得倾斜角【详解】经过两点的直线的斜率为,设该直线的倾斜角为,则,又,所以.故选:B5、C【解析】线性规划问题,作出可行域后,根据几何意义求解【详解】作出可行域如图所示,,数形结合知过时取最小值故选:C6、A【解析】由切线的性质,可得,,再结合椭圆定义,即得解【详解】因为过点的直线圆的切线,,,所以由椭圆定义可得,可得椭圆的离心率故选:A7、A【解析】利用充分条件和必要条件的定义判断.【详解】若方程表示圆,则,即,解得或,故“”是“方程是圆的方程”的充分不必要条件,故选:A8、B【解析】根据充分条件、必要条件的定义和椭圆的标椎方程,判断可得出结论.【详解】解:充分性:当,方程表示圆,充分性不成立;必要性:若方程表示椭圆,则,必有且,必要性成立,因此,“且”是“方程表示椭圆”的必要不充分条件.故选:B.9、D【解析】根据特称命题否定的方法求解,改变量词,否定结论.【详解】由题意可知命题“存在,使得”的否定为“对任意,”.故选:D.10、C【解析】根据是假命题,判断出是真命题.对分成,和两种情况,结合方程有实数根,求得的取值范围.详解】┐p是假命题,则p是真命题,∴ax2+2x﹣1=0有实数根,当a=0时,方程为2x﹣1=0,解得x=0.5,有根,符合题意;当a≠0时,方程有根,等价于△=4+4a≥0,∴a≥﹣1且,综上所述,a的可能取值为a≥﹣1故选:C【点睛】本小题主要考查根据命题否定的真假性求参数,属于基础题.11、D【解析】由题设条件求出,从而可求.【详解】设公差为,因为,,故,解得,故,故选:D.12、B【解析】由抛物线可得焦点坐标,结合点到直线的距离公式,即可求解.【详解】由抛物线可得焦点坐标为,根据点到直线的距离公式,可得,即抛物线的焦点到直线的距离为.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、111【解析】求出甲的中位数和乙的极差即得解.【详解】解:由题得甲的中位数为,乙的极差为,所以它们的和为.故答案为:11114、【解析】利用基本不等式即可求解.【详解】,,又,,,当且仅当即,等号成立,.故答案为:【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.15、【解析】由题意可得,从而可求出的值【详解】因为三个数2,,6成等比数列,所以,解得故答案为:16、【解析】根据几何概型计算公式进行求解即可.【详解】设“区间上随机取1个数”,对应集合为,区间长度为3,“取到的数小于2”,对应集合为,区间长度为1,所以.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明过程见解析;(2).【解析】(1)利用平面与平面垂直的性质得出直线与平面垂直,进而得出平面;(2)建立空间直角坐标系即可求解.【小问1详解】证明:因为平面平面,交线为且平面中,所以平面又平面所以又,且所以平面【小问2详解】解:由(1)知,平面且所以、、两两垂直因此以原点,建立如图所示的空间直角坐标系因为,,,设所以,,,,由(1)知,平面所以为平面的法向量且因为直线与平面所成角的正弦值为所以解得:所以,又,,所以,,,设平面与平面的法向量分别为:,所以,令,则令,则,,即设平面与平面夹角为则所以平面与平面夹角的余弦值为.18、(1);(2)(i),,;(ii).【解析】(1)推导出数列为等差数列,确定该数列的首项和公差,即可求得数列的通项公式;(2)(i)利用对数函数的单调性结合题中定义可求得、、的值;(ii)分别解不等式、、,结合题中定义可求得数列的前项的和.【小问1详解】解:因为,,则,可得,,可得,以此类推可知,对任意的,.由,变形为,是一个以为公差的等差数列,且首项为,所以,,因此,.【小问2详解】解:(i),则,,则,故,,则,故;(ii),当时,即当时,,当时,即当时,,当时,即当时,,因此,数列的前项的和为.19、(1)(2)【解析】(1)由题意求出即可求解;(2)由椭圆的定义和三角形面积公式求解即可【小问1详解】因为椭圆C与椭圆有相同的焦点,所以椭圆C的焦点,,,又,所以,,所以椭圆C的标准方程为.【小问2详解】由,,得,,而,所以,所以20、(1),焦点坐标(2)【解析】(1)将点的坐标代入抛物线的方程,可求得的值,进而可得抛物线的焦点坐标;(2)写出直线的方程,联立直线与抛物线方程求得交点坐标,利用两点之间的距离公式即可求解.【小问1详解】因为点在抛物线上,所以,即所以抛物线的方程为,焦点坐标为;【小问2详解】由已知得直线方程为,即由得,解得或所以,则21、(1)证明见解析(2)【解析】(1)取的中点,利用三角形中位线定理可证明BG//EF,由线线平行,可得线面平行;(2根据图像可得,以为底面,证明为高,利用三棱锥的体积公式,可得答案;【小问1详解】取的中点,因为为的中点,所以且,又因为为的中点,四边形为菱形,所以且,所以且,故四边形BFEG为平行四边形,所以BG//E

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论