湖南省邵东县第三中学2026届数学高二上期末检测试题含解析_第1页
湖南省邵东县第三中学2026届数学高二上期末检测试题含解析_第2页
湖南省邵东县第三中学2026届数学高二上期末检测试题含解析_第3页
湖南省邵东县第三中学2026届数学高二上期末检测试题含解析_第4页
湖南省邵东县第三中学2026届数学高二上期末检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省邵东县第三中学2026届数学高二上期末检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知、是平面直角坐标系上的直线,“与的斜率相等”是“与平行”的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.既非充分条件也非必要条件2.设函数,则()A.1 B.5C. D.03.焦点在轴的正半轴上,且焦点到准线的距离为的抛物线的标准方程是()A. B.C. D.4.不等式表示的平面区域是一个()A.三角形 B.直角三角形C.矩形 D.梯形5.设命题甲:,命题乙:直线与直线平行,则()A.甲是乙的充分不必要条件 B.甲是乙的必要不充分条件C.甲是乙的充要条件 D.甲是乙的既不充分也不必要条件6.如图,是函数的部分图象,且关于直线对称,则()A. B.C. D.7.若实数满足,则点不可能落在()A.第一象限 B.第二象限C.第三象限 D.第四象限8.在圆上任取一点P,过点P作x轴的垂线段PD,D为垂足,当点P在圆上运动时,线段PD的中点M的轨迹记为C,则曲线C的离心率为()A. B.C. D.9.计算复数:()A. B.C. D.10.如下图,边长为2的正方体中,O是正方体的中心,M,N,T分别是棱BC,,的中点,下列说法错误的是()A. B.C. D.到平面MON的距离为111.在下列函数中,最小值为2的是()A. B.C. D.12.已知函数的导函数满足,则()A. B.C.3 D.4二、填空题:本题共4小题,每小题5分,共20分。13.若过点和的直线与直线平行,则_______14.已知函数是函数的导函数,,对任意实数都有,则不等式的解集为___________.15.已知某次数学期末试卷中有8道4选1的单选题16.若数列满足,,则__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线:的焦点是圆与轴的一个交点.(1)求抛物线的方程;(2)若过点的直线与抛物线交于不同的两点A、B,О为坐标原点,证明:.18.(12分)设锐角三角形ABC的内角A、B、C的对边分别为a、b、c,.(1)求B的大小(2)若,,求b.19.(12分)已知数列的首项,且满足.(1)求证:数列是等比数列;(2)求数列的前n项和.20.(12分)在等差数列中,,.(1)求数列通项公式;(2)若,求数列的前项和.21.(12分)已知函数在其定义域内有两个不同的极值点(1)求a的取值范围;(2)设的两个极值点分别为,证明:22.(10分)已知动点在椭圆:()上,,为椭圆左、右焦点.过点作轴的垂线,垂足为,点满足,且点的轨迹是过点的圆(1)求椭圆方程;(2)过点,分别作平行直线和,设交椭圆于点,,交椭圆于点,,求四边形的面积的最大值

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据直线平行与直线斜率的关系,即可求解.【详解】解:与的斜率相等”,“与可能重合,故前者不可以推出后者,若与平行,与的斜率可能都不存在,故后者不可以推出前者,故前者是后者的既非充分条件也非必要条件,故选:D.2、B【解析】由题意结合导数的运算可得,再由导数的概念即可得解.【详解】由题意,所以,所以原式等于.故选:B.3、A【解析】直接由焦点位置及焦点到准线的距离写出标准方程即可.【详解】由焦点在轴的正半轴上知抛物线开口向上,又焦点到准线的距离为,故抛物线的标准方程是.故选:A.4、D【解析】作出不等式组所表示平面区域,可得出结论.【详解】由可得或,作出不等式组所表示的平面区域如下图中的阴影部分区域所示:由图可知,不等式表示的平面区域是一个梯形.故选:D.5、A【解析】根据充分条件和必要条件的定义,结合两直线平行的性质进行求解即可.【详解】当时,直线的方程为,直线方程为,此时,直线与直线平行,即甲乙;直线和直线平行,则,解得或,即乙甲;则甲是乙的充分不必要条件.故选:.6、C【解析】先根据条件确定为函数的极大值点,得到的值,再根据图像的单调性和导数几何意义得到和的正负即可判断.【详解】根据题意得,为函数部分函数的极大值点,所以,又因为函数在单调递增,由图像可知处切线斜率为锐角,根据导数的几何意义,所以,又因为函数在单调递增,由图像可知处切线斜率为钝角,根据导数的几何意义所以.即.故选:C.7、B【解析】作出给定的不等式组表示的平面区域,观察图形即可得解.【详解】因实数满足,作出不等式组表示的平面区域,如图中阴影部分,观察图形知,阴影区域不过第二象限,即点不可能落在第二象限.故选:B8、B【解析】设,,则由题意可得,代入圆方程中化简可得曲线C的方程,从而可求出离心率【详解】设,,则,得,所以,因为点在圆上,所以,即,所以点的轨迹方程为,所以,则所以离心率为,故选:B9、D【解析】直接利用复数代数形式的乘除运算化简可得结论.【详解】故选:D.10、D【解析】建立空间直角坐标系,进而根据空间向量的坐标运算判断A,B,C;对D,算出平面MON的法向量,进而求出向量在该法向量方向上投影的绝对值,即为所求距离.【详解】如图建立空间直角坐标系,则.对A,,则,则A正确;对B,,则,则B正确;对C,,则C正确;对D,设平面MON的法向量为,则,取z=1,得,,所以到平面MON的距离为,则D错误.故选:D.11、C【解析】结合基本不等式的知识对选项逐一分析,由此确定正确选项.【详解】对于A选项,时,为负数,A错误.对于B选项,,,,但不存在使成立,所以B错误.对于C选项,,当且仅当时等号成立,C正确.对于D选项,,,,但不存在使成立,所以D错误.故选:C12、C【解析】先对函数求导,再由,可求出的关系式,然后求【详解】由,得,因为,所以,所以,故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据两直线的位置关系求解.【详解】因为过点和的直线与直线平行,所以,解得,故答案为:314、【解析】令则,∴在R上是减函数又等价于∴故不等式的解集是答案:点睛:本题考查用构造函数的方法解不等式,即通过构造合适的函数,利用函数的单调性求得不等式的解集,解题时要注意常见的函数类型,如在本题中由于涉及到,故可从以下两种情况入手解决:(1)对于,可构造函数;(2)对于,可构造函数15、##0.84375【解析】合理设出事件,利用全概率公式进行求解.【详解】设小王从这8题中任选1题,且作对为事件A,选到能完整做对的5道题为事件B,选到有思路的两道题为事件C,选到完全没有思路为事件D,则,,,由全概率公式可得:PA=PB故答案为:16、7【解析】根据递推公式,依次求得值.【详解】依题意,由,可知,故答案为:7三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)证明见解析【解析】(1)由圆与轴的交点分别为,可得抛物线的焦点为,从而即可求解;(2)设直线为,联立抛物线方程,由韦达定理及,求出即可得证.【小问1详解】解:由题意知,圆与轴的交点分别为,则抛物线的焦点为,所以,所以抛物线方程为;【小问2详解】证明:设直线为,联立方程,有,所以,所以,所以.18、(1);(2)【解析】(1)由正弦定理,可得,进而可求出和角;(2)利用余弦定理,可得,即可求出.【详解】(1)由,得,因为,所以,又因为B为锐角,所以(2)由余弦定理,可得,解得【点睛】本题考查正弦、余弦定理在解三角形中的运用,考查学生的计算求解能力,属于基础题.19、(1)证明见解析;(2)当为偶数时,;当为奇数时,.【解析】(1)根据等比数列的定义进行证明即可;(2)利用分组求和法,结合错位相减法进行求解即可.【小问1详解】由题知:所以又因为所以所以数列为以-1为首项,-1为公比的等比数列;【小问2详解】由(1)知:,所以,,记,所以,当为偶数时,;当为奇数时,;记两式相减得:,所以,所以,当偶数时,;当为奇数时,.20、(1);(2).【解析】(1)利用等差数列的基本量,根据题意,列出方程,即可求得公差以及通项公式;(2)根据(1)中所求,结合等差数列的前项和的公式,求得,以及,再利用等比数列的前项和公式求得.【小问1详解】因为,所以,故可得,所以.【小问2详解】因为,所以.于是,令,则.显然数列是等比数列,且,公比,所以数列的前n项和.21、(1);(2)证明见解析.【解析】(1)对函数求导,把问题转化为导函数值为0的方程有两个正根,再构造函数求解作答.(2)将所证不等式等价转化,构造函数,利用导数探讨其单调性作答.【小问1详解】函数的定义域为,求导得:,依题意,函数在上有两个不同极值点,于是得有两个不等的正根,令,,则,当时,,当时,,于是得在上单调递增,在上单调递减,,因,恒成立,即当时,的值从递减到0(不能取0),又,有两个不等的正根等价于直线与函数的图象有两个不同的公共点,如图,因此有,所以a取值范围是.【小问2详解】由(1)知分别是方程的两个不等的正根,,即,作差得,则有,原不等式,令,则,于是得,设,则,因此,在单调递增,则有,即成立,所以.【点睛】关键点睛:涉及不等式恒成立问题,将给定不等式等价转化,构造函数,利用函数思想是解决问题的关键.22、(1);(2)【解析】(1)设点和,由题意可得点的轨迹方程,将点Q的坐标代入T的方程计算出即可;(2)设的方程,和,联立椭圆方程并消元得到

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论