2026届山东省名校交流数学高二上期末预测试题含解析_第1页
2026届山东省名校交流数学高二上期末预测试题含解析_第2页
2026届山东省名校交流数学高二上期末预测试题含解析_第3页
2026届山东省名校交流数学高二上期末预测试题含解析_第4页
2026届山东省名校交流数学高二上期末预测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届山东省名校交流数学高二上期末预测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知直三棱柱中,,,,则异面直线与所成角的余弦值为()A. B.C. D.2.已知数列满足,,.设,若对于,都有恒成立,则最大值为A.3 B.4C.7 D.93.过点,且斜率为2的直线方程是A. B.C. D.4.抛物线焦点坐标为()A. B.C. D.5.已知双曲线的两个焦点,,是双曲线上一点,且,,则双曲线的标准方程是()A. B.C. D.6.以轴为对称轴,抛物线通径的长为8,顶点在坐标原点的抛物线的方程是()A. B.C.或 D.或7.已知直线:恒过点,过点作直线与圆:相交于A,B两点,则的最小值为()A. B.2C.4 D.8.已知函数,则()A. B.0C. D.19.某市物价部门对5家商场的某商品一天的销售量及其售价进行调查,5家商场的售价(元)和销售量(件)之间的一组数据如表所示.按公式计算,与的回归直线方程是,则下列说法错误的是()售价99.51010.511销售量1110865A.B.售价变量每增加1个单位时,销售变量大约减少3.2个单位C.当时,的估计值为12.8D.销售量与售价成正相关10.数列2,,9,,的一个通项公式可以是()A. B.C. D.11.已知x,y满足约束条件,则的最大值为()A.3 B.C.1 D.12.已知双曲线渐近线方程为,则该双曲线的离心率等于()A. B.C.2 D.4二、填空题:本题共4小题,每小题5分,共20分。13.已知集合,集合,则__________.14.若关于的不等式恒成立,则实数的取值范围是______.15.四棱锥中,底面是一个平行四边形,,,,则四棱锥体积为_______16.在圆M:中,过点的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知幂函数在上单调递减,函数的定义域为集合A(1)求m的值;(2)当时,的值域为集合B,若是成立的充分不必要条件,求实数的取值范围18.(12分)如图,已知双曲线,过向双曲线作两条切线,切点分别为,,且.(1)证明:直线的方程为.(2)设为双曲线的左焦点,证明:.19.(12分)已知函数(1)求曲线在点(e,)的切线方程;(2)求函数的单调区间.20.(12分)北京、张家港2022年冬奥会申办委员会在俄罗斯索契举办了发布会,某公司为了竞标配套活动的相关代言,决定对旗下的某商品进行一次评估.该商品原来每件售价为25元,年销售8万件.(1)据市场调查,若价格每提高1元,销售量将相应减少2000件,要使销售的总收入不低于原收入,该商品每件定价最多为多少元?(2)为了抓住申奥契机,扩大该商品的影响力,提高年销售量.公司决定立即对该商品进行全面技术革新和营销策略改革,并提高定价到x元.公司拟投入万作为技改费用,投入50万元作为固定宣传费用,投入万元作为浮动宣传费用.试问:当该商品改革后的销售量a至少应达到多少万件时,才可能使改革后的销售收入不低于原收入与总投入之和?并求出此时商品的每件定价.21.(12分)已知点,圆(1)若过点的直线与圆相切,求直线的方程;(2)若直线与圆相交于A,两点,弦的长为,求的值22.(10分)已知数列是公差不为0的等差数列,首项,且成等比数列(1)求数列的通项公式;(2)设数列满足,求数列的前n项和

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】作出辅助线,找到异面直线与所成角,进而利用余弦定理及勾股定理求出各边长,最后利用余弦定理求出余弦值.【详解】如图所示,把三棱柱补成四棱柱,异面直线与所成角为,由勾股定理得:,,∴故选:C2、A【解析】整理数列的通项公式有:,结合可得数列是首项为,公比为的等比数列,则,,原问题即:恒成立,当时,,即>3,综上可得:的最大值为3.本题选择A选项点睛:数列的递推关系是给出数列的一种方法,根据给出的初始值和递推关系可以依次写出这个数列的各项,由递推关系求数列的通项公式,常用的方法有:①求出数列的前几项,再归纳猜想出数列的一个通项公式;②将已知递推关系式整理、变形,变成等差、等比数列,或用累加法、累乘法、迭代法求通项3、A【解析】由直线点斜式计算出直线方程.【详解】因为直线过点,且斜率为2,所以该直线方程为,即.故选【点睛】本题考查了求直线方程,由题意已知点坐标和斜率,故选用点斜式即可求出答案,较为简单.4、C【解析】由抛物线方程确定焦点位置,确定焦参数,得焦点坐标【详解】抛物线的焦点在轴正半轴,,,,因此焦点坐标为故选:C5、D【解析】根据条件设,,由条件求得,即可求得双曲线方程.【详解】设,则由已知得,,又,,又,,双曲线的标准方程为.故选:D6、C【解析】由分焦点在轴的正半轴上和焦点在轴的负半轴上,两种情况讨论设出方程,根据,即可求解.【详解】由题意,抛物线的顶点在原点,以轴为对称轴,且通经长为8,当抛物线的焦点在轴的正半轴上时,设抛物线的方程为,可得,解得,所以抛物线方程为;当抛物线的焦点在轴的负半轴上时,设抛物线的方程为,可得,解得,所以抛物线方程为,所以所求抛物线的方程为.故选:C.7、A【解析】根据将最小值问题转化为d取得最大值问题,然后结合图形可解.【详解】将,变形为,故直线恒过点,圆心,半径,已知点P在圆内,过点作直线与圆相交于A,两点,记圆心到直线的距离为d,则,所以当d取得最大值时,有最小值,结合图形易知,当直线与线段垂直的时候,d取得最大值,即取得最小值,此时,所以.故选:A.8、B【解析】先求导,再代入求值.详解】,所以.故选:B9、D【解析】首先求出、,再根据回归直线方程必过样本中心点,即可求出,再根据回归直线方程的性质一一判断即可;【详解】解:因为,,与回归直线方程,恒过定点,,解得,故A正确,所以回归直线方程为,即售价变量每增加1个单位时,销售变量大约减少3.2个单位,故B正确;当时,即当时,的估计值为12.8,故C正确;因为回归直线方程为,所以销售量与售价成负相关,故D错误;故选:D10、C【解析】用检验法,由通项公式验证是否符合数列各项,结合排除法可得【详解】第一项为正数,BD中求出第一项均为负数,排除,而AC均满足,A中,,排除A,C中满足,,,故选:C11、A【解析】由题意首先画出可行域,然后结合目标函数的几何意义求解最大值即可.【详解】绘制不等式组表示的平面区域如图所示,结合目标函数的几何意义可知目标函数在点A处取得最大值,联立直线方程:,可得点A的坐标为:,据此可知目标函数的最大值为:.故选:A【点睛】方法点睛:求线性目标函数的最值,当时,直线过可行域且在y轴上截距最大时,z值最大,在y轴截距最小时,z值最小;当时,直线过可行域且在y轴上截距最大时,z值最小,在y轴上截距最小时,z值最大.12、A【解析】由双曲线的渐近线方程,可得,再由的关系和离心率公式,计算即可得到所求值【详解】解:双曲线的渐近线方程为,由题意可得即,可得由可得,故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、##(-1,2]【解析】根据两集合的并集的含义,即可得答案.【详解】因为集合,集合,所以,故答案为:14、【解析】设由题可知,当时,可得适合题意,当时,可求函数的最小值即得,当时不合题意,即得.【详解】设,由题可知,∴,当时,,适合题意,所以,当时,令,则,此时时,,单调递减,,,单调递增,∴,又,∴,∴,即,解得,当时,时,,,故的值有正有负,不合题意;综上,实数的取值范围是.故答案为:.【点睛】关键点点睛:本题考查不等式恒成立求参数的取值范围,设由题可知,当时,利用导数可求函数的最小值,结合,可得,进而通过解,即得.15、【解析】计算,,得到底面,计算,,计算体积得到答案.【详解】由,,所以底面,,故,体积为.故答案为:16.16、【解析】首先将圆的方程配成标准式,即可得到圆心坐标与半径,从而可得点在圆内,即可得到过点的最长弦、最短弦弦长,即可求出四边形的面积;【详解】解:圆M:,即,圆心,半径,点,则,所以点在圆内,所以过点的最长弦,又,所以最短弦,所以故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据幂函数的定义和单调性求解;(2)利用根式函数的定义域和值域求得集合A,B,再由是A的真子集求解.【小问1详解】解:因为幂函数在上单调递减,所以,解得.【小问2详解】由,得,解得,所以,当时的值域为,所以,因为是成立的充分不必要条件,所以是A的真子集,,解得.18、(1)证明见解析(2)证明见解析【解析】(1)设出切线方程,联立后用韦达定理及根的判别式进行表达出A的横坐标与纵坐标,进而表达出直线的方程,化简即为结果;(2)再第一问的基础上,利用向量的夹角公式表达出夹角的余弦值,进而证明出结论.【小问1详解】显然直线的斜率存在,设直线的方程为,联立得,则,化简得.因为方程有两个相等实根,故切点A的横坐标,得,则,故,则,即.【小问2详解】同理可得,又与均过,所以.故,,,又因为,所以,则,,故,故.【点睛】圆锥曲线中证明角度相关的问题,往往需要转化为斜率或向量进行求解.19、(1);(2)在单调递减,在单调递增【解析】(1)求出函数的导数,求出切线的斜率,切点坐标,然后求解切线方程;(2)利用导函数的符号,判断函数的单调性,求解函数的单调区间即可【详解】解:(1)由得,所以切线斜率为切点坐标为,所以切线方程为,即;(2),令,得当时,;当时,,∴在单调递减,在单调递增20、(1)40;(2)a至少达到10.2万件时,才可能使改革后的销售收入不低于原收入与总投入之和,此时该商品的每件定价为30元.【解析】(1)设每件定价为x元,可得提高价格后的销售量,根据销售的总收入不低于原收入,建立不等式,解不等式可得每件最高定价;(2)依题意,x>25时,不等式有解,等价于x>25时,有解,利用基本不等式,可以求得a.【详解】(1)设每件定价为t元,依题意得,整理得,解得:25≤t≤40.所以要使销售的总收入不低于原收入,每件定价最多为40元.(2)依题意知:当x>25时,不等式有解,等价于x>25时,有解.由于,当且仅当,即x=30时等号成立,所以a≥10.2.当该商品改革后的销售量a至少达到10.2万件时,才可能使改革后的销售收入不低于原收入与总投入之和,此时该商品的每件定价为30元.21、(1)或;(2)【解析】(1)分直线斜率存在和不存在两种情况分析,当当过点的直线存在斜率时,设方程为,利用圆心到直线的距离等于半径求得k,即可得出答案;(2)求出圆心到直线的距离,再根据圆的弦长公式即可得出答案.【详解】解:(1)由题意知圆心的坐标为,半径,当过点的直线斜率不存在时,方程为,由圆

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论