山东省枣庄市市中区枣庄三中2026届数学高二上期末质量跟踪监视试题含解析_第1页
山东省枣庄市市中区枣庄三中2026届数学高二上期末质量跟踪监视试题含解析_第2页
山东省枣庄市市中区枣庄三中2026届数学高二上期末质量跟踪监视试题含解析_第3页
山东省枣庄市市中区枣庄三中2026届数学高二上期末质量跟踪监视试题含解析_第4页
山东省枣庄市市中区枣庄三中2026届数学高二上期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省枣庄市市中区枣庄三中2026届数学高二上期末质量跟踪监视试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知双曲线的焦距为,且双曲线的一条渐近线与直线平行,则双曲线的方程为()A. B.C. D.2.如图,过抛物线的焦点的直线交抛物线于点、,交其准线于点,若,且,则的值为()A. B.C. D.3.将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有()A.60种 B.120种C.240种 D.480种4.已知m,n表示两条不同直线,表示两个不同平面.设有两个命题::若,则;:若,则.则下列命题中为真命题的是()A. B.C. D.5.已知椭圆的短轴长为8,且一个焦点是圆的圆心,则该椭圆的左顶点为()A B.C. D.6.直线,若的倾斜角为60°,则的斜率为()A. B.C. D.7.双曲线:(,)的左、右焦点分别为、,点在双曲线上,,,则的离心率为()A. B.2C. D.8.已知双曲线的左焦点为F,O为坐标原点,M,N两点分别在C的左、右两支上,若四边形OFMN为菱形,则C的离心率为()A. B.C. D.9.已知集合,集合或,是实数集,则()A. B.C. D.10.胡萝卜中含有大量的胡萝卜素,摄入人体消化器官后,可以转化为维生素,现从,两个品种的胡萝卜所含的胡萝卜素(单位:)得到茎叶图如图所示,则下列说法不正确的是A. B.的方差大于的方差C.品种的众数为 D.品种的中位数为11.如图,在长方体中,是线段上一点,且,若,则()A. B.C. D.12.若方程表示双曲线,则的取值范围是()A.或 B.C.或 D.二、填空题:本题共4小题,每小题5分,共20分。13.在空间直角坐标系O-xyz中,平面OAB的一个法向量为=(2,-2,1),已知点P(-1,3,2),则点P到平面OAB的距离d等于__________________14.设,向量,,,且,,则___________.15.设抛物线的准线方程为__________.16.在正方体中,则直线与平面所成角的正弦值为__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知圆过点,,且圆心在直线:上.(1)求圆的方程;(2)若从点发出的光线经过轴反射,反射光线刚好经过圆心,求反射光线的方程.18.(12分)王同学入读某大学金融专业,过完年刚好得到红包6000元,她计划以此作为启动资金进行理投资,每月月底获得的投资收益是该月月初投入资金的20%,并从中拿出1000元作为自己的生活费,余款作为资金全部投入下个月,如此继续.设第n个月月底的投资市值为an.(1)求证:数列{-5000}为等比数列;(2)如果王同学想在第二年过年的时候给奶奶买一台全身按摩椅(商场标价为12899元),将一年后投资市值全部取出来是否足够?19.(12分)在如图所示的几何体中,四边形ABCD为正方形,平面ABCD,,,.(1)求证:平面PAD;(2)求直线AB与平面PCE所成角的正弦值;20.(12分)在平面直角坐标系xOy中,曲线的参数方程为,(t为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的普通方程和曲线的直角坐标方程;(2)已知,曲线与曲线相交于A,B两点,求.21.(12分)已知数列的前项和为,且,(1)求的通项公式;(2)求的最小值22.(10分)如图,在四棱柱中,底面,,,且,(1)求证:平面平面;(2)求二面角所成角的余弦值

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据焦点在x轴上的双曲线渐近线斜率为±可求a,b关系,再结合a,b,c关系即可求解﹒【详解】∵双曲线1(a>0,b>0)的焦距为2,且双曲线的一条渐近线与直线2x+y=0平行,∴,∴b=2a,∵c2=a2+b2,∴a=1,b=2,∴双曲线的方程为故选:B2、B【解析】分别过点、作准线的垂线,垂足分别为点、,设,根据抛物线的定义以及直角三角形的性质可求得,结合已知条件求得,分析出为的中点,进而可得出,即可得解.【详解】如图,分别过点、作准线的垂线,垂足分别为点、,设,则由己知得,由抛物线的定义得,故,在直角三角形中,,,因为,则,从而得,所以,,则为的中点,从而.故选:B.3、C【解析】先确定有一个项目中分配2名志愿者,其余各项目中分配1名志愿者,然后利用组合,排列,乘法原理求得.【详解】根据题意,有一个项目中分配2名志愿者,其余各项目中分配1名志愿者,可以先从5名志愿者中任选2人,组成一个小组,有种选法;然后连同其余三人,看成四个元素,四个项目看成四个不同的位置,四个不同的元素在四个不同的位置的排列方法数有4!种,根据乘法原理,完成这件事,共有种不同的分配方案,故选:C.【点睛】本题考查排列组合的应用问题,属基础题,关键是首先确定人数的分配情况,然后利用先选后排思想求解.4、B【解析】利用直线与平面,平面与平面的位置关系判断2个命题的真假,再利用复合命题的真值表判断选项的正误即可【详解】,表示两条不同直线,,表示两个不同平面:若,,则也可能,也可能与相交,所以是假命题,为真命题;:令直线的方向向量为,直线的方向向量为,若,则,则,所以是真命题,所以为假命题;所以为假命题,是真命题,为假命题,是真命题,所以为假命题故选:5、D【解析】根据椭圆的一个焦点是圆的圆心,求得c,再根据椭圆的短轴长为8求得b即可.【详解】圆的圆心是,所以椭圆的一个焦点是,即c=3,又椭圆的短轴长为8,即b=4,所以椭圆长半轴长为,所以椭圆的左顶点为,故选:D6、D【解析】直线,斜率乘积为,斜线斜率等于倾斜角的正切值.【详解】,,所以.故选:D.7、C【解析】根据双曲线定义、余弦定理,结合题意,求得关系,即可求得离心率.【详解】根据题意,作图如下:不妨设,则,,①;在△中,由余弦定理可得:,代值得:,②;联立①②两式可得:;在△和△中,由,可得:,整理得:,③;联立②③可得:,又,故可得:,则,则,故离心率为.故选:C.8、C【解析】由题意可得且,从而求出点的坐标,将其代入双曲线方程中,即可得出离心率.【详解】由题意,四边形为菱形,如图,则且,分别为的左,右支上的点,设点在第二象限,在第一象限.由双曲线的对称性,可得,过点作轴交轴于点,则,所以,则,所以,所以,则,即,解得,或,由双曲线的离心率,所以取,则故选:C9、A【解析】先化简集合,再由集合的交集、补集运算求解即可【详解】,或,故故选:A10、C【解析】读懂茎叶图,分别计算出众数、中位数、方差,然后对各选项进行判断【详解】由茎叶图知,品种所含胡萝卜素普遍高于品种,所以,故A正确;品种的数据波动比品种的数据波动大,所以的方差大于的方差,故B正确;品种的众数为与,故C错误;品种的数据的中位数为,故D正确.故选.【点睛】本题主要考查了对数据的分析,首先要读懂茎叶图,然后计算出众数、中位数、方差,即可对各选项进行判断,较为基础11、A【解析】将利用、、表示,再利用空间向量的加法可得出关于、、的表达式,进而可求得的值.【详解】连接、,因,因为是线段上一点,且,则,因此,因此,.故选:A.12、A【解析】由和的分母异号可得【详解】由题意,解得或故选:A二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】O是平面OAB上一个点,设点P到平面OAB的距离为d,则d=∵=(-1,3,2).(2,-2,1)=-6,∴d==2即点P到平面OAB的距离为2考点:空间向量在立体几何中的运用14、3【解析】利用向量平行和向量垂直的性质列出方程组,求出,,再由空间向量坐标运算法则求出,由此能求出【详解】解:设,,向量,,,且,,,解得,,所以,,,故答案为:15、【解析】由题意结合抛物线的标准方程确定其准线方程即可.【详解】由抛物线方程可得,则,故准线方程为.故答案为【点睛】本题主要考查由抛物线方程确定其准线方法,属于基础题.16、【解析】建立空间直角坐标系,利用空间向量夹角公式进行求解即可【详解】建立如图所示的空间直角坐标系,设该正方体的棱长为1,所以,,,,因此,,,设平面的法向量为:,所以有:,令,所以,因此,设与的夹角为,直线与平面所成角为,所以有,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)根据题意设圆心,利用两点坐标公式求距离公式表示出,解出,确定圆心坐标和半径,进而得出圆的标准方程;(2)根据点关于坐标轴对称的点的特征可得,利用直线的两点式方程即可得出结果.【小问1详解】圆过点,,因为圆心在直线::上,设圆心,又圆过点,,所以,即,解得,所以,所以故圆的方程为:;【小问2详解】点关于轴的对称点,则反射光线必经过点和点,由直线的两点式方程可得,即:.18、(1)证明见解析(2)足够【解析】(1)由题意可得出递推关系,变形后利用等比数列的定义求证即可;(2)由(1)利用等比数列的通项公式求出,再求出,再计算即可得出结论.【小问1详解】依题意,第1个月底股票市值则又∴数列是首项为1200,公比为1.2的等比数列.【小问2详解】由(1)知∴∵,所以王同学将一年理财投资所得全部取出来是足够的.19、(1)证明见详解(2)【解析】(1)将线面平行转化为面面平行,由已知易证;(2)延长相交与点F,利用等体积法求点A到平面PCE,然后由可得.【小问1详解】四边形ABCD为正方形平面PAD,平面PAD平面PAD同理,,平面PAD又平面,平面平面平面PAD平面平面PAD【小问2详解】延长相交与点F,因为,所以分别为的中点.记点到平面PCF为d,直线AB与平面PCE所成角为,则.易知,,,,因为平面ABCD,所以,所以因为,所以由得:即,得所以22.20、(1),(2)2【解析】(1)消参数即可得曲线的普通方程,利用极坐标方程与直角坐标方程之间的转化关系式,从而曲线的直角坐标方程;(2)将的参数方程代入的直角坐标方程,得关于的一元二次方程,由韦达定理得,即可得的值.【小问1详解】由,消去参数,得,即,所以曲线的普通方程为.由,得,即,所以曲线的直角坐标方程为【小问2详解】将代入,整理得,则,令方程的两个根为由韦达定理得,所以.21、(1)(2)【解析】(1)由可求得的值,由可求得数列的通项公式;(2)求得,利用二次函数的基本性质可求得的最小值.【小问1详解】解:由题意可得,解得,所以,.当时,,当时,,也满足,故对任意的,.【小问2详解】解:,所以,当或时,取得最小值,且最小值为.22、(1)证明见解析;(2).【解析】(1)证出,,由线面垂直的判定定理可得平面,再根据面面垂直的判定定理即可证明.(2)分别以,,为,,轴,建立空间直角坐标系,求出平面的一个法向量以及平面的一个法向量,由即可求解.【详解】(1)证明:因为,,所以,,因为,所以,所以,即因为底面,所以底面,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论