2026届福建省漳州市漳浦县达志中学数学高一上期末质量检测试题含解析_第1页
2026届福建省漳州市漳浦县达志中学数学高一上期末质量检测试题含解析_第2页
2026届福建省漳州市漳浦县达志中学数学高一上期末质量检测试题含解析_第3页
2026届福建省漳州市漳浦县达志中学数学高一上期末质量检测试题含解析_第4页
2026届福建省漳州市漳浦县达志中学数学高一上期末质量检测试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届福建省漳州市漳浦县达志中学数学高一上期末质量检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,,则的值为A. B.C. D.22.已知正实数满足,则最小值为A. B.C. D.3.三个数大小的顺序是A. B.C. D.4.当生物死后,它体内的碳14含量会按确定的比率衰减(称为衰减率),大约每经过5730年衰减为原来的一半.2010年考古学家对良渚古城水利系统中一条水坝的建筑材料草裹泥)上提取的草茎遗存进行碳14检测,检测出碳14的残留量约为初始量的,以此推断此水坝建成的年代大概是公元前()(参考数据:,)A.年 B.年C.年 D.年5.下列函数中,与函数有相同图象的一个是A. B.C. D.6.命题“,是4倍数”的否定为()A.,是4的倍数 B.,不是4的倍数C.,不是4倍数 D.,不是4的倍数7.函数的最小正周期是()A.π B.2πC.3π D.4π8.已知命题,则是()A., B.,C., D.,9.设,则A.f(x)与g(x)都是奇函数 B.f(x)是奇函数,g(x)是偶函数C.f(x)与g(x)都是偶函数 D.f(x)是偶函数,g(x)是奇函数10.已知函数,则的值是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知两点,,以线段为直径的圆经过原点,则该圆的标准方程为____________.12.若直线与垂直,则________13.为了实现绿色发展,避免用电浪费,某城市对居民生活用电实行“阶梯电价”.计费方法如表所示,若某户居民某月交纳电费227元,则该月用电量为_______度.每户每月用电量电价不超过210度的部分0.5元/度超过210度但不超过400度的部分0.6元/度超过400度的部分0.8元/度14.函数的值域为_____________15.计算:__________,__________16.设函数,则__________,方程的解为__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,四面体中,平面,,,,.(Ⅰ)求四面体的四个面的面积中,最大的面积是多少?(Ⅱ)证明:在线段上存在点,使得,并求的值18.已知函数的图像关于y轴对称(1)求k的值;(2)若此函数的图像在直线上方,求实数b的取值范围(提示:可考虑两者函数值的大小.)19.已知定义域为的函数是奇函数.(1)求实数的值;(2)判断并用定义证明该函数在定义域上的单调性;(3)若方程在内有解,求实数的取值范围20.在平面直角坐标系中,锐角的顶点是坐标原点O,始边为x轴的非负半轴,终边上有一点(1)求的值;(2)若,且,求角的值21.已知,,第三象限角,.求:(1)的值;(2)的值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】直接利用三角函数关系式的恒等变换和特殊角的三角函数的值求出结果【详解】在中,,则,,,,故选C【点睛】本题考查的知识要点:三角函数关系式的恒等变换和特殊角三角函数的值的应用,主要考查学生的运算能力和转化能力,属于基础题型2、A【解析】由题设条件得,,利用基本不等式求出最值【详解】由已知,,所以当且仅当时等号成立,又,所以时取最小值故选A【点睛】本题考查据题设条件构造可以利用基本不等式的形式,利用基本不等式求最值3、B【解析】根据指数函数和对数函数的单调性知:,即;,即;,即;所以,故正确答案为选项B考点:指数函数和对数函数的单调性;间接比较法4、B【解析】根据碳14的半衰期为5730年,即每5730年含量减少一半,设原来的量为,经过年后变成了,即可列出等式求出的值,即可求解.【详解】解:根据题意可设原来的量为,经过年后变成了,即,两边同时取对数,得:,即,,,以此推断此水坝建成的年代大概是公元前年.故选:B.5、B【解析】逐一考查选项中的函数与所给的函数是否为同一个函数即可确定其图象是否相同.【详解】逐一考查所给的选项:A.,与题中所给函数的解析式不一致,图象不相同;B.,与题中所给函数的解析式和定义域都一致,图象相同;C.的定义域为,与题中所给函数的定义域不一致,图象不相同;D.的定义域为,与题中所给函数的定义域不一致,图象不相同;故选B.【点睛】本题主要考查函数相等的概念,需要同时考查函数的定义域和函数的对应关系,属于中等题.6、B【解析】根据特称量词命题的否定是全称量词命题即可求解【详解】因为特称量词命题的否定是全称量词命题,所以命题“,是4的倍数”的否定为“,不是4的倍数”故选:B7、A【解析】化简得出,即可求出最小正周期.【详解】,最小正周期.故选:A.8、C【解析】由全称命题的否定是特称命题即可得结果.【详解】由全称命题的否定是特称命题知:,,是,,故选:C.9、B【解析】定义域为,定义域为R,均关于原点对称因为,所以f(x)是奇函数,因为,所以g(x)是偶函数,选B.10、D【解析】根据题意,直接计算即可得答案.【详解】解:由题知,,.故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由以线段为直径的圆经过原点,则可得,求得参数的值,然后由中点坐标公式求所求圆的圆心,用两点距离公式求所求圆的直径,再运算即可.【详解】解:由题意有,,又以线段为直径的圆经过原点,则,则,解得,即,则的中点坐标为,即为,又,即该圆的标准方程为,故答案为.【点睛】本题考查了圆的性质及以两定点为直径的圆的方程的求法,重点考查了运算能力,属基础题.12、【解析】根据两直线垂直的等价条件列方程,解方程即可求解.【详解】因为直线与垂直,所以,解得:,故答案为:.13、410【解析】由题意列出电费(元)关于用电量(度)的函数,令,代入运算即可得解.【详解】由题意,电费(元)关于用电量(度)的函数为:,即,当时,,若,,则,解得.故答案为:410.14、【解析】利用二倍角余弦公式可得令,结合二次函数的图象与性质得到结果.【详解】由题意得:令,则∵在上单调递减,∴的值域为:故答案为:【点睛】本题给出含有三角函数式的“类二次”函数,求函数的值域.着重考查了三角函数的最值和二次函数在闭区间上的值域等知识,属于中档题15、①.0②.-2【解析】答案:0,16、①.1②.4或-2【解析】(1)∵,∴(2)当时,由可得,解得;当时,由可得,解得或(舍去)故方程的解为或答案:1,或三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ)证明见解析.【解析】(1)易得,,,均为直角三角形,且的面积最大,进而求解即可;(2)在平面ABC内,过点B作BN⊥AC,垂足为N.在平面PAC内,过点N作MN∥PA交PC于点M,连接BM,可证得AC⊥平面MBN,从而使得AC⊥BM,利用相似和平行求解即可.试题解析:(1)由题设AB=1,AC=2,BC=,可得,所以,由PA⊥平面ABC,BC、AB⊂平面ABC,所以,,所以,又由于PA∩AB=A,故BC⊥平面PAB,PB⊂平面PAB,所以,所以,,,均为直角三角形,且的面积最大,.(2)证明:在平面ABC内,过点B作BN⊥AC,垂足为N.在平面PAC内,过点N作MN∥PA交PC于点M,连接BM.由PA⊥平面ABC知PA⊥AC,所以MN⊥AC由于BN∩MN=N,故AC⊥平面MBN.又BM⊂平面MBN,所以AC⊥BM.因为与相似,,从而NC=AC-AN=.由MN∥PA,得==.18、(1)(2)【解析】(1)根据函数是偶函数,结合偶函数的定义,求参数的值;(2)由题意可知恒成立,分离参数后可得,转化求函数的值域,即可求得的取值范围.【小问1详解】,所以,因为函数的图像关于轴对称,函数是偶函数,所以,即,解得:;【小问2详解】,由题意可知,恒成立,即,转化为,令,函数的值域是,所以.19、(1)1;(2)见解析;(3)[-1,3).【解析】(1)根据解得,再利用奇偶性的定义验证,即可求得实数的值;(2)先对分离常数后,判断出为递减函数,再利用单调性的定义作差证明即可;(3)先用函数的奇函数性质,再用减函数性质变形,然后分离参数可得,在内有解,令,只要.【详解】(1)依题意得,,故,此时,对任意均有,所以是奇函数,所以.(2)在上减函数,证明如下:任取,则所以该函数在定义域上是减函数(3)由函数为奇函数知,,又函数单调递减函数,从而,即方程在内有解,令,只要,,且,∴∴当时,原方程在内有解【点睛】本题主要考查函数的奇偶性与单调性以及函数值域的应用,属于难题.已知函数的奇偶性求参数,主要方法有两个,一是利用:(1)奇函数由恒成立求解,(2)偶函数由恒成立求解;二是利用特殊值:奇函数一般由求解,偶函数一般由求解,用特殊法求解参数后,一定要注意验证奇偶性.20、(1);(2)【解析】

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论