版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省青阳县第一中学2026届高一上数学期末学业水平测试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.祖暅原理也称祖氏原理,一个涉及几何求积的著名命题.内容为:“幂势既同,则积不容异”.“幂”是截面积,“势”是几何体的高.意思是两个等高的几何体,如在等高处的截面积相等,体积相等.设A,B为两个等高的几何体,p:A、B的体积相等,q:A、B在同一高处的截面积相等.根据祖暅原理可知,p是q的()A.充分必要条件 B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件2.若将函数的图象上所有点的横坐标缩短为原来的一半(纵坐标不变),再将所得图象向左平移个单位长度,得到函数的图象,则下列说法正确的是()A.的最小正周期为 B.在区间上单调递减C.图象的一条对称轴为直线 D.图象的一个对称中心为3.根据表格中的数据,可以判定函数的一个零点所在的区间为A. B.C. D.4.函数f(x)=ax(a>0,a≠1)对于任意的实数xA.f(xy)=f(x)f(y) B.f(x+y)=f(x)f(y)C.f(xy)=f(x)+f(y) D.f(x+y)=f(x)+f(y)5.如图,在正方体中,异面直线与所成的角为()A.90° B.60°C.45° D.30°6.已知角的终边上有一点的坐标是,则的值为()A. B.C. D.7.设,则“”是“”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件8.命题p:∀x∈N,x3>x2的否定形式¬p为()A.∀x∈N,x3≤x2 B.∃x∈N,x3>x2C.∃x∈N,x3<x2 D.∃x∈N,x3≤x29.已知函数,若函数有两个不同的零点,则实数的取值范围是()A. B.C. D.10.已知函数,,则函数的零点个数不可能是()A.2个 B.3个C.4个 D.5个二、填空题:本大题共6小题,每小题5分,共30分。11.在平行四边形中,为上的中点,若与对角线相交于,且,则__________12.若,,则______13.已知函数,若,不等式恒成立,则的取值范围是___________.14.若f(x)为偶函数,且当x≤0时,,则不等式>的解集______.15.潮汐是发生在沿海地区的一种自然现象,是指海水在天体(主要是月球和太阳)引潮力作用下所产生的周期性运动.习惯上把海面垂直方向涨落称为潮汐,而海水在水平方向的流动称为潮流.早先的人们为了表示生潮的时刻,把发生在早晨的高潮叫潮,发生在晚上的高潮叫汐,这是潮汐名称的由来.下表中给出了某市码头某一天水深与时间的关系(夜间零点开始计时).时刻(t)024681012水深(y)单位:米5.04.84.74.64.44.34.2时刻(t)141618202224水深(y)单位:米4.34.44.64.74.85.0用函数模型来近似地描述这些数据,则________.16.若幂函数的图象过点,则______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.(1)计算(2)已知角的终边过点,求角的三个三角函数值18.已知函数.(1)求的最小正周期以及对称轴方程;(2)设函数,求在上的值域.19.如图,在三棱柱中,侧棱平面,、分别是、的中点,点在侧棱上,且,,求证:(1)直线平面;(2)平面平面.20.已知集合且(1)若,求的值;(2)若,求实数组成的集合21.在三棱柱中,侧棱底面,点是的中点.(1)求证:;(2)求证:;(3)求直线与平面所成的角的正切值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】根据与的推出关系判断【详解】已知A,B为两个等高的几何体,由祖暅原理知,而不能推出,可举反例,两个相同的圆锥,一个正置,一个倒置,此时两个几何体等高且体积相等,但在同一高处的截面积不相等,则是的必要不充分条件故选:C2、D【解析】根据题意函数的图象上所有点的横坐标缩短为原来的一半(纵坐标不变),再将所得图象向左平移个单位长度,得到函数,即可求出最小正周期,把看成是整体,分别求的单调递减区间、对称轴、对称中心,在分别验证选项即可得到答案.【详解】由于函数的图象上所有点的横坐标缩短为原来的一半(纵坐标不变),故函数的解析式为,再将所得图象向左平移个单位长度,.,故A错误;的单调减区间为,故在区间内不单调递减;图象的对称轴为,不存在使得图象的一条对称轴为直线,故C错误;图象的对称中心的横坐标为,当时,图象的一个对称中心为,故D正确.故选:D.3、D【解析】函数,满足.由零点存在定理可知函数的一个零点所在的区间为.故选D.点睛:函数的零点问题,常根据零点存在性定理来判断,如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b)使得f(c)=0,
这个c也就是方程f(x)=0的根.由此可判断根所在区间.4、B【解析】由指数的运算性质得到ax+y【详解】解:由函数f(x)=a得f(x+y)=a所以函数f(x)=ax(a>0,a≠1)对于任意的实数x、y故选:B.【点睛】本题考查了指数的运算性质,是基础题.5、B【解析】连接,可证明,然后可得即为异面直线与所成的角,然后可求出答案.【详解】连接,因为是正方体,所以和平行且相等所以四边形是平行四边形,所以,所以为异面直线与所成的角.因为是等边三角形,所以故选:B6、D【解析】求出,由三角函数定义求得,再由诱导公式得结论【详解】依题有,∴,∴.故选:D7、A【解析】解绝对值不等式求解集,根据充分、必要性的定义判断题设条件间的充分、必要关系.【详解】由,可得,∴“”是“”的充分而不必要条件.故选:A.8、D【解析】根据含有一个量词命题的否定的定义求解.【详解】因为命题p:∀x∈N,x3>x2的是全称量词命题,其否定是存在量词命题,所以¬p:∃x∈N,x3≤x2故选:D【点睛】本题主要考查含有一个量词命题的否定,还考查了理解辨析的能力,属于基础题.9、A【解析】将函数零点个数问题转化为图象交点个数问题,再数形结合得解.【详解】函数有两个不同的零点,即方程有两个不同的根,从而函数的图象和函数的图象有两个不同的交点,由可知,当时,函数是周期为1的函数,如图,在同一直角坐标系中作出函数的图象和函数的图象,数形结合可得,当即时,两函数图象有两个不同的交点,故函数有两个不同的零点.故选:A.10、B【解析】由可得或,然后画出的图象,结合图象可分析出答案.【详解】由可得或的图象如下:所以当时,,此时无零点,有2个零点,所以的零点个数为2;当时,,此时有2个零点,有2个零点,所以的零点个数为4;当时,,此时有4个零点,有2个零点,所以的零点个数为6;当时,,此时有3个零点,有2个零点,所以的零点个数为5;当且时,此时有2个零点,有2个零点,所以的零点个数为4;当时,,此时的零点个数为2;当时,,此时有2个零点,有3个零点,所以的零点个数为5;当时,,此时有2个零点,有4个零点,所以的零点个数为6;当时,,此时有2个零点,有2个零点,所以零点个数为4;当时,,此时有2个零点,无零点,所以的零点个数为2;综上:的零点个数可以为2、4、5、6,故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、3【解析】由题意如图:根据平行线分线段成比例定理,可知,又因为,所以根据三角形相似判定方法可以知道∵为的中点∴相似比为∴∴故答案为312、【解析】利用指数的运算性质可求得结果.【详解】由指数的运算性质可得.故答案为:.13、【解析】原问题等价于时,恒成立和时,恒成立,从而即可求解.【详解】解:由题意,因为,不等式恒成立,所以时,恒成立,即,所以;时,恒成立,即,令,则,由对勾函数的单调性知在上单调递增,在上单调递减,所以时,,所以;综上,.所以的取值范围是.故答案为:14、【解析】由已知条件分析在上的单调性,利用函数的奇偶性可得,再根据函数的单调性解不等式即可.【详解】f(x)为偶函数,且当x≤0时,单调递增,当时,函数单调递减,若>,f(x)为偶函数,,,同时平方并化简得,解得或,即不等式>的解集为.故答案为:【点睛】本题考查函数的奇偶性与单调性的综合应用,属于中档题.15、##【解析】根据题意条件,结合表内给的数据,通过一天内水深的最大值和最小值,即可列出关于、之间的关系,通过解方程解出、,即可求解出答案.【详解】由表中某市码头某一天水深与时间的关系近似为函数,从表中数据可知,函数的最大值为5.0,最小值为4.2,所以,解得,,故.故答案为:或写成.16、【解析】设,将点代入函数的解析式,求出实数的值,即可求出的值.【详解】设,则,得,,因此,.故答案为.【点睛】本题考查幂函数值的计算,解题的关键就是求出幂函数的解析式,考查运算求解能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2),,【解析】(1)根据指数、对数运算性质求解即可.(2)根据三角函数定义求解即可.【详解】(1).(2)由题知:,所以,,18、(1)最小正同期为,对称轴方程为(2)【解析】(1)利用三角函数的恒等变换公式将化为只含有一个三角函数形式,即可求得结果;(2)将展开化简,然后采用整体处理的方法,求得答案.【小问1详解】,所以的最小正同期为.令,得对称轴方程为.【小问2详解】由题意可知,因为,所以,故,所以,故在上的值域为.19、(1)证明见解析;(2)证明见解析.【解析】(1)由中位线的性质得出,由棱柱的性质可得出,由平行线的传递性可得出,进而可证明出平面;(2)证明出平面,可得出,结合可证明出平面,再由面面垂直的判定定理即可证明出结论成立.【详解】(1)、分别为、的中点,为的中位线,,为棱柱,,,平面,平面,平面;(2)在三棱柱中,平面,平面,,又且,、平面,平面,而平面,故.又,且,、平面,平面,又平面,平面平面.【点睛】本题考查线面平行和面面垂直的证明,考查推理能力,属于中等题.20、(1),(2)【解析】(1)由得,,求得,再求得,从而得集合,最后可得值;(2)求得集合,由分类讨论可得值【小问1详解】因,,且,,所以,,所以,解得,所以.所以,所以,解得【小问2详解】若,可得,因为,所以.当,则;当,则;当,综上,可得实数a组成的集合为21、(1)见解析(2)见解析(3)【解析】【试题分析】(1)依据题设运用线面平行的判定定理进行分析推证;(2)借助题设条件先证明线面垂直,再运用线面垂直的性质定理进行推证;(3)先运用线面角的定义找出线面角,再运用解三角形求其正切值:(1)如图,令分别为的中点,又∵(2)证明:∠⊥在直三棱柱中,⊥又⊥平面,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 道口岗前安全培训会课件
- 2024+共识声明:成人心脏手术患者快速拔管建议解读
- 达州大滩消防安全培训课件
- 边沟开挖安全教育培训课件
- 数据中心ups单机并机试题及答案
- 车队防疫安全培训课件
- 车队安全培训计划方案课件
- 分公司副经理内部竞聘经营管理类笔试题
- 车间级岗前安全培训流程课件
- 酒店客房预订与收益最大化策略制度
- 2026届云南省昆明市西山区民中数学高一上期末考试模拟试题含解析
- 2025年大学第一学年(食品营养与健康)营养学基础测试题及答案
- 2025-2030乌干达基于咖啡的种植行业市场现状供需分析及投资评估规划分析研究报告
- 2026年共青团中央所属单位招聘66人备考题库及答案详解一套
- 人民警察法培训课件
- 2026年哈尔滨职业技术学院单招职业适应性考试题库参考答案详解
- 2025云南昆明巫家坝建设发展有限责任公司及下属公司第四季度社会招聘31人历年真题汇编带答案解析
- 输尿管切开取石课件
- 小猫绝育协议书
- 66kV及以下架空电力线路设计标准
- 2025年浙江乍浦经济开发区(嘉兴港区)区属国有公司公开招聘28人笔试考试备考试题及答案解析
评论
0/150
提交评论