河南省名校大联考2026届高一上数学期末监测模拟试题含解析_第1页
河南省名校大联考2026届高一上数学期末监测模拟试题含解析_第2页
河南省名校大联考2026届高一上数学期末监测模拟试题含解析_第3页
河南省名校大联考2026届高一上数学期末监测模拟试题含解析_第4页
河南省名校大联考2026届高一上数学期末监测模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南省名校大联考2026届高一上数学期末监测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的零点个数为()A.个 B.个C.个 D.个2.已知函数在上是增函数,则的取值范围是()A., B.,C., D.,3.为了得到函数的图象,可以将函数的图象A.向右平移个单位 B.向左平移个单位C.向右平移个单位 D.向左平移个单位4.点P从O点出发,按逆时针方向沿周长为l的图形运动一周,O、P两点的距离y与点P所走路程x的函数关系如图所示,那么点P所走的图形是()A. B.C. D.5.若角600°的终边上有一点(-4,a),则a的值是A. B.C. D.6.已知函数f(x)=是奇函数,若f(2m-1)+f(m-2)≥0,则m的取值范围为()A. B.C. D.7.已知,是第三象限角,则的值为()A. B.C. D.8.已知,则()A.-4 B.4C. D.9.若,且,则的值是A. B.C. D.10.已知函数,在下列区间中,包含零点的区间是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的最大值为().12.已知函数满足,当时,,若不等式的解集是集合的子集,则a的取值范围是______13.若函数满足:对任意实数,有且,当[0,1]时,,则[2017,2018]时,______________________________14.求值:__________15.已知函数(且)在上单调递减,且关于的方程恰有两个不相等的实数解,则的取值范围是_____16.夏季为旅游旺季,青岛某酒店工作人员为了适时为游客准备食物,调整投入,减少浪费,他们统计了每个月的游客人数,发现每年各个月份的游客人数会发生周期性的变化,并且有以下规律:①每年相同的月份,游客人数基本相同;②游客人数在2月份最少,在8月份最多,相差约200人;③2月份的游客约为60人,随后逐月递增直到8月份达到最多.则用一个正弦型三角函数描述一年中游客人数与月份之间关系为__________;需准备不少于210人的食物的月份数为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,且的最小正周期为.(1)求关于x的不等式的解集;(2)求在上的单调区间.18.已知函数fx=logax(a>0且(1)求a的值;(2)求满足0<ffx<119.已知集合,集合(1)当时,求;(2)若,求实数的取值范围;(3)若,求实数的取值范围20.已知集合,.(1)求,;(2)已知集合,若,求实数的取值范围.21.某商人计划经销A,B两种商品,据调查统计,当投资额为万元时,在经销A,B商品中所获得的收益分别是,,已知投资额为0时,收益为0.(1)求a,b值;(2)若该商人投入万元经营这两种商品,试建立该商人所获收益的函数模型;(3)如果该商人准备投入5万元经营这两种商品,请你帮他制定一个资金投入方案,使他能获得最大收益,并求出其收益的最大值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】根据给定条件直接解方程即可判断作答.详解】由得:,即,解得,即,所以函数的零点个数为2.故选:C2、D【解析】先根据题意建立不等式组,再求解出,最后给出选项即可.【详解】解:因为函数在上是增函数,所以,解得,则故选:D.【点睛】本题考查利用分段函数的单调性求参数范围,是基础题3、D【解析】因为,所以将函数的图象向左平移个单位,选D.考点:三角函数图像变换【易错点睛】对y=Asin(ωx+φ)进行图象变换时应注意以下两点:(1)平移变换时,x变为x±a(a>0),变换后的函数解析式为y=Asin[ω(x±a)+φ];(2)伸缩变换时,x变为(横坐标变为原来的k倍),变换后的函数解析式为y=Asin(x+φ)4、C【解析】认真观察函数的图象,根据其运动特点,采用排除法,即可求解.【详解】观察函数的运动图象,可以发现两个显著特点:①点运动到周长的一半时,最大;②点的运动图象是抛物线,设点为周长的一半,如下图所示:图1中,因为,不符合条件①,因此排除选项A;图4中,由,不符合条件①,并且的距离不是对称变化的,因此排除选项D;另外,在图2中,当点在线段上运动时,此时,其图象是一条线段,不符合条件②,因此排除选项B.故选:C5、C【解析】∵角的终边上有一点,根据三角函数的定义可得,即,故选C.6、B【解析】由已知结合f(0)=0求得a=-1,得到函数f(x)在R上为增函数,利用函数单调性化f(2m-1)+f(m-2)≥0为f(2m-1)≥f(-m+2),即2m-1≥-m+2,则答案可求【详解】∵函数f(x)=的定义域为R,且是奇函数,,即a=-1,∵2x在(-∞,+∞)上为增函数,∴函数在(-∞,+∞)上为增函数,由f(2m-1)+f(m-2)≥0,得f(2m-1)≥f(-m+2),∴2m-1≥-m+2,可得m≥1∴m的取值范围为m≥1故选B【点睛】本题考查函数单调性与奇偶性的应用,考查数学转化思想方法,是中档题7、A【解析】利用同角三角函数的平方关系求出的值,然后利用两角差的余弦公式求出的值.【详解】为第三象限角,所以,,因此,.故选:A.【点睛】本题考查利用两角差的余弦公式求值,在利用同角三角函数基本关系求值时,要结合角的取值范围确定所求三角函数值的符号,考查计算能力,属于基础题.8、C【解析】已知,可得,根据两角差的正切公式计算即可得出结果.【详解】已知,则,.故选:C.9、B【解析】由已知利用同角三角函数基本关系式可求,的值,即可得解【详解】由题意,知,且,所以,则,故选B【点睛】本题主要考查了同角三角函数基本关系式在三角函数化简求值中的应用,其中解答中熟练应用同角三角函数的基本关系式,准确求解是解答的关键,着重考查了运算与求解能力,属于基础题.10、C【解析】因为,,所以由根的存在性定理可知:选C.考点:本小题主要考查函数的零点知识,正确理解零点定义及根的存在性定理是解答好本类题目的关键.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】利用可求最大值.【详解】因为,即,,取到最小值;所以函数的最大值为.故答案为:.【点睛】本题主要考查三角函数的最值问题,借助正弦函数的值域能方便求解,侧重考查数学抽象的核心素养.12、【解析】先由已知条件判断出函数的单调性,再把不等式转化为整式不等式,再利用子集的要求即可求得a的取值范围.【详解】由可知,关于对称,又,当时,单调递减,故不等式等价于,即,因为不等式解集是集合的子集,所以,解得故答案为:13、【解析】由题意可得:,则,据此有,即函数的周期为,设,则,据此可得:,若,则,此时.14、【解析】直接利用两角和的正切公式计算可得;【详解】解:故答案为:15、【解析】利用函数是减函数,根据对数的图象和性质判断出的大致范围,再根据为减函数,得到不等式组,利用函数的图象,方程的解的个数,推出的范围【详解】函数(且),在上单调递减,则:;解得,由图象可知,在上,有且仅有一个解,故在上,同样有且仅有一个解,当即时,联立,则,解得或1(舍去),当时由图象可知,符合条件,综上:的取值范围为.故答案为【点睛】本题考查函数的单调性和方程的零点,对于分段函数在定义域内是减函数,除了每一段都是减函数以外,还要注意右段在左段的下方,经常会被忽略,是一个易错点;复杂方程的解通常转化为函数的零点,或两函数的交点,体现了数学结合思想,属于难题.16、①.②.5【解析】设函数为,根据题意,即可求得函数的解析式,再根据题意得出不等式,即可求解.【详解】设该函数为,根据条件①,可知这个函数的周期是12;由②可知,最小,最大,且,故该函数的振幅为100;由③可知,在上单调递增,且,所以,根据上述分析,可得,解得,且,解得,又由当时,最小,当时,最大,可得,且,又因为,所以,所以游客人数与月份之间的关系式为,由条件可知,化简得,可得,解得,因为,且,所以,即只有五个月份要准备不少于210人的食物.故答案为:;.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)单调递增区间为和,单调递减区间为【解析】(1)首先利用两角差的正弦公式及二倍角公式将函数化简,再根据函数的最小正周期求出,即可得到函数解析式,再根据正弦函数的性质计算可得;(2)由的取值范围,求出的范围,再跟正弦函数的性质计算可得.【小问1详解】解:因为所以即,由及的最小正周期为,所以,解得;由得,,解得,所求不等式的解集为小问2详解】解:,,在和上递增,在上递减,令,解得;令,解得;令,解得;所以在上的单调递增区间为和,单调递减区间为;18、(1)2;(2)2,4.【解析】(1)由函数fx的单调性和最值可求得实数a(2)由已知条件可得1<fx=log2【小问1详解】解:因为fx=log因为fx在12,4所以f12小问2详解】解;由0<ffx=log2所以x的取值范围是2,419、(1);(2);(3)【解析】(1)求出集合,利用并集的定义可求得集合;(2)利用可得出关于实数的不等式组,由此可解得实数的取值范围;(3)分和两种情况讨论,结合可得出关于实数的不等式组,可求得实数的取值范围.【详解】(1)当时,,则;(2)由知,解得,即的取值范围是;(3)由得①若,即时,符合题意;②若,即时,需或得或,即综上知,即实数的取值范围为【点睛】易错点睛:在求解本题第(3)问时,容易忽略的情况,从而导致求解错误.20、(1),;(2).【解析】(1)求出集合,再由集合的交、并、补运算即可求解.(2)根据集合的包含关系列出不等式:且,解不等式即可求解.【详解】(1)∵,∴

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论