版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
内蒙古自治区包头市三十三中2026届高一数学第一学期期末学业水平测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.命题,一元二次方程有实根,则()A.,一元二次方程没有实根B.,一元二次方程没有实根C.,一元二次方程有实根D.,一元二次方程有实根2.函数的定义域是()A. B.C. D.3.已知集合和关系的韦恩图如下,则阴影部分所表示的集合为()A. B.C. D.4.对于任意实数,给定下列命题正确的是()A.若,则 B.若,则C.若,则 D.若,则5.曲线与直线在轴右侧的交点按横坐标从小到大依次记为,,,,,…,则等于A. B.2C.3 D.6.为了得到函数的图像,只需将函数的图像()A.向右平移个单位 B.向右平移个单位C.向左平移个单位 D.向左平移个单位7.下列各式正确是A. B.C. D.8.设函数,若恰有2个零点,则实数的取值范围是()A. B.C. D.9.下列有关命题的说法错误的是()A.的增区间为B.“”是“-4x+3=0”的充分不必要条件C.若集合中只有两个子集,则D.对于命题p:.存在,使得,则p:任意,均有10.已知幂函数的图象过点,则的值为()A.3 B.9C.27 D.二、填空题:本大题共6小题,每小题5分,共30分。11.某挂钟秒针的端点A到中心点的距离为,秒针均匀地绕点旋转,当时间时,点A与钟面上标12的点重合,A与两点距离地面的高度差与存在函数关系式,则解析式___________,其中,一圈内A与两点距离地面的高度差不低于的时长为___________.12.已知函数(,且)的图象恒过定点,且点在幂函数的图象上,则__________.13.如下图所示的正四棱台的上底面边长为2,下底面边长为8,高为3214.已知定义域为R的函数,满足,则实数a的取值范围是______15.向量与,则向量在方向上的投影为______16.已知函数的部分图象如图所示,则___________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.函数()(1)当时,①求函数的单调区间;②求函数在区间的值域;(2)当时,记函数的最大值为,求的表达式18.定义在R上的函数对任意的都有,且,当时.(1)求的值,并证明是R上的增函数;(2)设,(i)判断的单调性(不需要证明)(ii)解关于x的不等式.19.已知角的顶点在坐标原点,始边与轴非负半轴重合,终边经过点(1)求,;(2)求的值20.已知向量满足,.(1)若的夹角为,求;(2)若,求与的夹角.21.如图,公路围成的是一块顶角为的角形耕地,其中,在该块土地中处有一小型建筑,经测量,它到公路的距离分别为,现要过点修建一条直线公路,将三条公路围成的区域建成一个工业园.(1)以为坐标原点建立适当的平面直角坐标系,并求出点的坐标;(2)三条公路围成的工业园区的面积恰为,求公路所在直线方程.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】根据全称命题的否定为特称命题可得出.【详解】因为全称命题的否定为特称命题,所以,一元二次方程没有实根.故选:B.2、A【解析】利用对数函数的真数大于零,即可求解.【详解】由函数,则,解得,所以函数的定义域为.故选:A【点睛】本题考查了对数型复合函数的定义域,需熟记对数的真数大于零,属于基础题.3、B【解析】首先判断出阴影部分表示,然后求得,再求得.【详解】依题意可知,,且阴影部分表示.,所以.故选:B【点睛】本小题主要考查根据韦恩图进行集合的运算,属于基础题.4、C【解析】利用特殊值判断A、B、D,根据不等式的性质证明C;【详解】解:对于A:当时,若则,故A错误;对于B:若,,,,满足,则,,不成立,故B错误;对于C:若,则,所以,故C正确;对于D:若,满足,但是,故D错误;故选:C5、B【解析】曲线与直线在轴右侧的交点按横坐标从小到大依次记为,曲线与直线在轴右侧的交点按横坐标转化为根,解简单三角方程可得对应的横坐标分别为,,故选B.【思路点睛】本题主要考查三角函数的图象以及简单的三角方程,属于中档题.解答本题的关键是将曲线与直线在轴右侧的交点按横坐标转化为根,可得或,令取特殊值即可求得,从而可得.6、A【解析】根据函数平移变换的方法,由即,只需向右平移个单位即可.【详解】根据函数平移变换,由变换为,只需将的图象向右平移个单位,即可得到的图像,故选A.【点睛】本题主要考查了三角函数图象的平移变换,解题关键是看自变量上的变化量,属于中档题.7、D【解析】对于,,,故,故错误;根据对数函数的单调性,可知错误故选8、B【解析】当时,在上单调递增,,当时,令得或(1)若,即时,在上无零点,此时,∴在[1,+∞)上有两个零点,符合题意;(2)若,即时,在(−∞,1)上有1个零点,∴在上只有1个零点,①若,则,∴,解得,②若,则,∴在上无零点,不符合题意;③若,则,∴在上无零点,不符合题意;综上a的取值范围是.选B点睛:解答本题的关键是对实数a进行分类讨论,根据a的不同取值先判断函数在(−∞,1)上的零点个数,在此基础上再判断函数在上的零点个数,看是否满足有两个零点即可9、C【解析】A.利用复合函数的单调性判断;B.利用充分条件和必要条件的定义判断;C.由方程有一根判断;D.由命题p的否定为全称量词命题判断.【详解】A.令,由,解得,由二次函数的性质知:t在上递增,在上递减,又在上递增,由复合函数的单调性知:在上递增,故正确;B.当时,-4x+3=0成立,故充分,当-4x+3=0成立时,解得或,故不必要,故正确;C.若集合中只有两个子集,则集合只有一个元素,即方程有一根,当时,,当时,,解得,所以或,故错误;D.因为命题p:.存在,使得存在量词命题,则其否定为全称量词命题,即p任意,均有,故正确;故选:C10、C【解析】求出幂函数的解析式,然后求解函数值【详解】幂函数的图象过点,可得,解得,幂函数的解析式为:,可得(3)故选:二、填空题:本大题共6小题,每小题5分,共30分。11、①.②.【解析】先求出经过,秒针转过的圆心角的为,进而表达出函数解析式,利用求出的解析式建立不等式,解出解集,得到答案.【详解】经过,秒针转过的圆心角为,得.由,得,又,故,得,解得:,故一圈内A与两点距离地面的高度差不低于的时长为.故答案为:,12、【解析】先求出定点的坐标,再代入幂函数,即可求出解析式.【详解】令可得,此时,所以函数(,且)的图象恒过定点,设幂函数,则,解得,所以,故答案为:【点睛】关键点点睛:本题的关键点是利用指数函数的性质和图象的特点得出,设幂函数,代入即可求得,.13、6【解析】如下图所示,O'B'=2,OM=214、【解析】先判断函数奇偶性,再判断函数的单调性,从而把条件不等式转化为简单不等式.【详解】由函数定义域为R,且,可知函数为奇函数.,令则,令则即在定义域R上单调递增,又,由此可知,当时,即,函数即为减函数;当时,即,函数即为增函数,故函数在R上的最小值为,可知函数在定义域为R上为增函数.根据以上两个性质,不等式可化为,不等式等价于即解之得或故答案为15、【解析】在方向上的投影为考点:向量的投影16、【解析】由图象可得最小正周期的值,进而可得,又函数图象过点,利用即可求解.【详解】解:由图可知,因为,所以,解得,因为函数的图象过点,所以,又,所以,故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)①的单调递增区间为,;单调递减区间为;②(2)【解析】(1)①分别在和两种情况下,结合二次函数的单调性可确定结果;②根据①中单调性可确定最值点,由最值可确定值域;(2)分别在、、三种情况下,结合二次函数对称轴位置与端点值的大小关系可确定最大值,由此得到.【小问1详解】当时,;①当时,,在上单调递增;当时,,在上单调递减,在上单调递增;综上所述:的单调递增区间为,;单调递减区间为②由①知:在上单调递增,在上单调递减,在上单调递增,,;,,,,,,在上的值域为.【小问2详解】由题意得:①当,即时,,对称轴为;当,即时,在上单调递增,;当,即时,在上单调递增,在上单调递减,;②当,即时,若,;若,;当时,,对称轴,在上单调递增,;③当,即时在上单调递增,在上单调递减,在上单调递增,,若,即时,;若,即时,;综上所述:.18、(1),证明见解析(2)(i)在上是单减单减函数(ii)【解析】(1)令可得,再可得答案,设,则,所以可证明单调性;(2)(i)根据复合函数的单调性法则可得答案;(ii)由题意可得,,结合函数的单调性可得的解为,则原不等式等价于,从而可得答案.【小问1详解】在中,令可得,则令可得,可得任取且,则,所以则即,所以是R上的增函数【小问2详解】(i)由在上是单减单减函数,又单调递增由复合函数的单调性规律可得在上是单减单减函数.(ii)由,所以的解为从而不等式的解为,即即,整理可得即,解得或,所以或所以原不等式的解集为19、(1)(2)1【解析】(1)根据三角函数的定义,计算即可得答案.(2)根据诱导公式,整理化简,代入,的值,即可得答案.【小问1详解】因为角终边经过点,所以,【小问2详解】原式20、(1)(2)【解析】(1)利用公式即可求得;(2)利用向量垂直的等价条件以及夹角公式即可求解.【详解】解:(1)由已知,得,所以,所以.(2)因为,所以.所以,即,所以.又,所以,即与的夹角为.【点睛】主要考查向量模、夹角的求解,数量积的计算以及向量垂直的等价条件的运用.属于基础题.21、(1);(2).【解析】(1)以为坐标原点,所在直线为轴,过点且垂直于的直线为轴,建立平面直角坐标系.根据条件求出直线的方程,设出点坐标,代点到直线的距离公式即可求出所求;(2)由(1)及题意设出直线的方程后,即可求得点的横坐标,与点的纵坐标,由求得后,即可求解.【详解】(1)以为坐标
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 边界渔业生产安全培训课件
- 审计整改调研方案
- 车队驾驶员安全培训模板课件
- 车队安全管理知识培训课件
- 车队安全培训评估课件
- 关于橡胶高分子职称评审的试题
- 车间线路安全培训课件
- 酒店客房设施设备保养与维护制度
- 车间级安全培训心得报告课件
- 车间级员工安全培训总结课件
- 2026年宁夏贺兰工业园区管委会工作人员社会化公开招聘备考题库附答案详解
- 盘州市教育局机关所属事业单位2025年公开考调工作人员备考题库完整答案详解
- 2025-2026四年级上科学期末检测试题
- 辽宁省鞍山市2025-2026学年八年级上学期1月期末语文试卷
- 班级演唱会课件
- 2025马年元旦新春晚会活动策划
- 交警新警执法培训
- 急性毒性测试:类器官芯片的快速响应
- 骨科护理标准操作流程手册
- 产品推广专员培训
- DB65T 3119-2022 建筑消防设施管理规范
评论
0/150
提交评论