版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省枣庄市现代实验学校2026届高二数学第一学期期末质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若函数在上有两个极值点,则下列选项中不正确的为()A. B.C. D.2.下列函数求导错误的是()A.B.C.D.3.新型冠状病毒(2019-NCoV)因2019年武汉病毒性肺炎病例而被发现,2020年1月12日被世界卫生组织命名,为考察某种药物预防该疾病的效果,进行动物试验,得到如下列联表:患病未患病总计服用药104555未服药203050总计3075105下列说法正确的是()参考数据:,0.050.013.8416.635A.有95%的把握认为药物有效B.有95%的把握认为药物无效C.在犯错误的概率不超过0.05的前提下认为药物无效D.在犯错误的概率不超过0.01的前提下认为药物有效4.已知圆:,点是直线:上的动点,过点引圆的两条切线、,其中、为切点,则直线经过定点()A. B.C. D.5.如图,在正方体中,点,分别是面对角线与的中点,若,,,则()A. B.C. D.6.在条件下,目标函数的最大值为2,则的最小值是()A.20 B.40C.60 D.807.已知函数,若,则()A. B.0C.1 D.28.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,他所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,而是逐项差数之差或者高次差相等.对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有一个高阶等差数列,其前6项分别为1,5,11,21,37,61,则该数列的第7项为()A.95 B.131C.139 D.1419.已知双曲线的一个焦点到它的一条渐近线的距离为,则()A.5 B.25C. D.10.在中,角,,所对的边分别为,,,若,,,则A. B.2C.3 D.11.已知椭圆的长轴长为,短轴长为,则椭圆上任意一点到椭圆中心的距离的取值范围是()A. B.C. D.12.在等差数列中,,且,,,构成等比数列,则公差()A.0或2 B.2C.0 D.0或二、填空题:本题共4小题,每小题5分,共20分。13.抛物线的准线方程是______14.已知双曲线与椭圆有公共的左、右焦点分别为,,以线段为直径的圆与双曲线C及其渐近线在第一象限内分别交于M,N两点,且线段的中点在另一条渐近线上,则的面积为___________.15.已知数列满足,定义使()为整数的k叫做“幸福数”,则区间内所有“幸福数”的和为_____16.已知点在圆C:()内,过点M的直线被圆C截得的弦长最小值为8,则______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在水平桌面上放一只内壁光滑的玻璃水杯,已知水杯内壁为抛物面型(抛物面指抛物线绕其对称轴旋转所得到的面),抛物面的轴截面是如图所示的抛物线.现有一些长短不一、质地均匀的细直金属棒,其长度均不小于抛物线通径的长度(通径是过抛物线焦点,且与抛物线的对称轴垂直的直线被抛物线截得的弦),若将这些细直金属棒,随意丢入该水杯中,实验发现:当细棒重心最低时,达到静止状态,此时细棒交汇于一点.(1)请结合你学过的数学知识,猜想细棒交汇点的位置;(2)以玻璃水杯内壁轴截面的抛物线顶点为原点,建立如图所示直角坐标系.设玻璃水杯内壁轴截面的抛物线方程为,将细直金属棒视为抛物线的弦,且弦长度为,以细直金属棒的中点为其重心,请从数学角度解释上述实验现象.18.(12分)已知抛物线的焦点F,C上一点到焦点的距离为5(1)求C方程;(2)过F作直线l,交C于A,B两点,若线段AB中点的纵坐标为-1,求直线l的方程19.(12分)求满足下列条件的圆锥曲线方程的标准方程.(1)经过点,两点的椭圆;(2)与双曲线-=1有相同的渐近线且经过点的双曲线.20.(12分)已知函数(1)求函数单调区间;(2)函数在区间上的最小值小于零,求a的取值范围21.(12分)三棱柱中,侧面为菱形,,,,(1)求证:面面;(2)在线段上是否存在一点M,使得二面角为,若存在,求出的值,若不存在,请说明理由22.(10分)在四棱锥中,底面为直角梯形,,,平面底面,为的中点,是棱上的点,,,.(1)求证:平面平面;(2)若,求直线与所成角的余弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】求导,根据题意可得,从而可得出答案.【详解】解:,因为函数在上有两个极值点,所以,即.所以ABD正确,C错误.故选:C.2、C【解析】每一个选项根据求导公式及法则来运算即可判断.【详解】对于A,,正确;对于B,,正确;对于C,,不正确;对于D,,正确.故选:C3、A【解析】根据列联表计算,对照临界值即可得出结论【详解】根据列联表,计算,由临界值表可知,有95%的把握认为药物有效,A正确故选:A4、D【解析】根据圆的切线性质,结合圆的标准方程、圆与圆的位置关系进行求解即可.【详解】因为、是圆的两条切线,所以,因此点、在以为直径的圆上,因为点是直线:上的动点,所以设,点,因此的中点的横坐标为:,纵坐标为:,,因此以为直径的圆的标准方程为:,而圆:,得:,即为直线的方程,由,所以直线经过定点,故选:D【点睛】关键点睛:由圆的切线性质得到点、在以为直径的圆上,运用圆与圆的位置关系进行求解是解题的关键.5、D【解析】由空间向量运算法则得,利用向量的线性运算求出结果.【详解】因为点,分别是面对角线与的中点,,,,所以故选:D.6、C【解析】首先画出可行域,找到最优解,得到关系式作为条件,再去求的最小值.【详解】画出的可行域,如下图:由得由得;由得;目标函数取最大值时必过N点,则则(当且仅当时等号成立)故选:C7、D【解析】求出函数的导数,直接代入即可求值.【详解】因为,所以,所以,所以.故选:D.8、A【解析】利用已知条件,推出数列的差数的差组成的数列是等差数列,转化求解即可【详解】由题意可知,1,5,11,21,37,61,……,的差的数列为4,6,10,16,24,……,则这个数列的差组成的数列为:2,4,6,8,……,是一个等差数列,设原数列的第7项为,则,解得,所以原数列的第7项为95,故选:A9、B【解析】由渐近线方程得到,焦点坐标为,渐近线方程为:,利用点到直线距离公式即得解【详解】由题意,双曲线故焦点坐标为,渐近线方程为:焦点到它的一条渐近线的距离为:解得:故选:B10、A【解析】利用正弦定理,可直接求出的值.【详解】在中,由正弦定理得,所以,故选A.【点睛】本题考查利用正弦定理求边,要记得正弦定理所适用的基本类型,考查计算能力,属于基础题11、A【解析】不妨设椭圆的焦点在轴上,设点,则,且有,利用二次函数的基本性质可求得的取值范围.【详解】不妨设椭圆的焦点在轴上,则该椭圆的标准方程为,设点,则,且有,所以,.故选:A.12、A【解析】根据等比中项的性质和等差数列的通项公式建立方程,可解得公差d得选项.【详解】解:因为在等差数列中,,且,,,构成等比数列,所以,即,所以,解得或,故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由题意可得p=4,所以准线方程,填14、【解析】求出椭圆焦点坐标,即双曲线焦点坐标,即双曲线的半焦距,再求出点坐标,利用中点在渐近线上得出的关系式,从而求得,然后可计算面积【详解】由题意椭圆中,即,以线段为直径的圆的方程为,由,解得(取第一象限交点坐标),,双曲线的不在第一象限的渐近线方程为,,的中点坐标为,它在渐近线上,所以,化简得,又,所以,双曲线方程为,则得,所以故答案为:15、2036【解析】先用换底公式化简之后,将表示出来,找出满足条件的“幸福数”,然后求和即可.【详解】当时,,所以,若满足正整数,则,即,所以在内的所有“幸福数”的和为:,故答案为:2036.16、【解析】根据点与圆的位置关系,可求得r的取值范围,再利用过圆内一点最短的弦,结合弦长公式可得到关于r的方程,求解即可.【详解】由点在圆C:内,且所以,又,解得过圆内一点最短的弦,应垂直于该定点与圆心的连线,即圆心到直线的距离为又,所以,解得故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)抛物线的焦点或抛物面的焦点(2)答案见解析【解析】(1)结合通径的特点可猜想得到结果;(2)将问题转化为当时,只要过点,则中点到的距离最小,根据,结合抛物线定义可得结论.【小问1详解】根据通径的特征,知通径会经过抛物线的焦点达到静止状态,则可猜想细棒交汇点位置为:抛物线焦点或抛物面的焦点.【小问2详解】解释上述现象,即证:当(为抛物线通径)时,只要过点,则中点到的距离最小;如图所示,记点在抛物线准线上的射影分别是,,由抛物线定义知:,当过抛物线焦点时,点到准线距离取得最小值,最小值为的一半,此时点到轴距离最小.【点睛】关键点点睛:本题考查抛物线的实际应用问题,解题关键是能够将问题转化为抛物线焦点弦的中点到轴距离最小问题的证明,通过抛物线的定义可证得结论.18、(1);(2).【解析】(1)由抛物线的定义,结合已知有求p,写出抛物线方程.(2)由题意设直线l为,联立抛物线方程,应用韦达定理可得,由中点公式有,进而求k值,写出直线方程.【详解】(1)由题意知:抛物线的准线为,则,可得,∴C的方程为.(2)由(1)知:,由题意知:直线l的斜率存在,令其方程为,∴联立抛物线方程,得:,,若,则,而线段AB中点的纵坐标为-1,∴,即,得,∴直线l的方程为.【点睛】关键点点睛:(1)利用抛物线定义求参数,写出抛物线方程;(2)由直线与抛物线相交,以及相交弦的中点坐标值,应用韦达定理、中点公式求直线斜率,并写出直线方程.19、(1);(2)【解析】(1)由题意可得,,从而可求出椭圆的标准方程,(2)由题意设双曲线的共渐近线方程为,再将的坐标代入方程可求出的值,从而可求出双曲线方程【小问1详解】因为,所以P、Q分别是椭圆长轴和短轴上的端点,且椭圆的焦点在x轴上,所以,所以椭圆的标准方程为.【小问2详解】设与双曲线共渐近线的方程为,代入点,解得m=2,所以双曲线的标准方程为20、(1)答案见解析;(2).【解析】(1)对求导并求定义域,讨论、分别判断的符号,进而确定单调区间.(2)由题设,结合(1)所得的单调性,讨论、、分别确定在给定区间上的最小值,根据最小值小于零求参数a的范围.【小问1详解】由题设,且定义域为,当,即时,在上,即在上递增;当,即时,在上,在上,所以在上递减,在上递增;【小问2详解】由(1)知:若,即时,则在上递增,故,可得;若,即时,则在上递减,在上递增,故,不合题设;若,即时,则在上递减,故,得;综上,a的取值范围.21、(1)证明见解析;(2)【解析】(1)取BC的中点O,连结AO、,在三角形中分别证明和,再利用勾股定理证明,结合线面垂直的判定定理可证明平面,再由面面垂直的判定定理即可证明结果.(2)建立空间直角坐标系,假设点M存在,设,求出M点坐标,然后求出平面的法向量,利用空间向量的方法根据二面角的平面角为可求出的值.【详解】(1)取BC的中点O,连结AO,,,为等腰直角三角形,所以,;侧面为菱形,,所以三角形为为等边三角形,所以,又,所以,又,满足,所以;因为,所以平面,因为平面中,所以平面平面.(2)由(1)问知:两两垂直,以O为坐标原点,为轴,为轴,为轴建立空间之间坐标系.则,,,,若存在点M,则点M在上,不妨设,则有,则,有,,设平面的法向量为,则解得:平面的法向量为则解得:或(舍)故存在点M,.【点睛】本题考查立体几何探索是否存在的问题,属于中档题.方法点睛:(1)判断是否存在的问题,一般先假设存在;(2)设出点坐标,作为已知条件,代入计算;(3)根据结果,判断是否存在.22、(1)证明见解析;(2);【解析
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年安阳市公安机关招聘留置看护辅警46人笔试备考题库附答案
- 2025天津西青南开敬业学校招聘备考题库附答案
- 2025年西安市泾河新城招聘紧缺人才通知(138人)笔试备考试题附答案
- 2025广西崇左凭祥国家重点开发开放试验区管理委员会招聘工作人员1人考试题库附答案
- 2025年哈尔滨通河县公益性岗位招聘96人备考题库附答案
- 2025年七台河桃山区招聘社区工作者27人考试模拟卷附答案
- AI赋能儿童发展:教育科技视角下的应用与实践
- 2026河南濮阳市城乡一体化示范区直机关事业单位招聘7人笔试备考题库及答案解析
- 2026北京市某政府单位热线值守招聘需求笔试备考题库及答案解析
- 2025秋人教版道德与法治八年级上册11.1党和人民信赖的英雄军队课件
- 【一例扩张型心肌病合并心力衰竭患者的个案护理】5400字【论文】
- 四川桥梁工程系梁专项施工方案
- DB32T 3695-2019房屋面积测算技术规程
- 贵州省纳雍县水东乡水东钼镍矿采矿权评估报告
- GB 8270-2014食品安全国家标准食品添加剂甜菊糖苷
- 2023年杭州临平环境科技有限公司招聘笔试题库及答案解析
- 易制毒化学品日常管理有关问题权威解释和答疑
- LF炉机械设备安装施工方案
- 湖北省高等教育自学考试
- 企业三级安全生产标准化评定表(新版)
- 中心卫生院关于成立按病种分值付费(DIP)工作领导小组及制度的通知
评论
0/150
提交评论