版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届上海市华东师范大学第一附属中学高二上数学期末质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.直线与椭圆交于两点,以线段为直径的圆恰好经过椭圆的左焦点,则此椭圆的离心率为()A B.C. D.2.设,,,则,,大小关系是A. B.C. D.3.已知为虚数单位,复数是纯虚数,则()A. B.4C.3 D.24.已知等比数列的前项和为,若,,则()A.20 B.30C.40 D.505.北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)()A.3699块 B.3474块C.3402块 D.3339块6.已知椭圆的离心率,为椭圆上的一个动点,若定点,则的最大值为A. B.C. D.7.如图所示,在中,,,,AD为BC边上的高,;若,则的值为()A. B.C. D.8.直线在轴上的截距为()A.3 B.C. D.9.已知函数是定义在上奇函数,,当时,有成立,则不等式的解集是()A. B.C. D.10.已知椭圆的左,右两个焦点分别为,若椭圆C上存在一点A,满足,则椭圆C的离心率的取值范围是()A. B.C. D.11.已知是等比数列,,,则()A. B.C. D.12.双曲线的渐近线方程是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知点在圆上,点在圆上,则的最小值是__________14.设,向量,,,且,,则___________.15.函数在上的最大值为______________16.在数列中,,,,若数列是递减数列,数列是递增数列,则______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知集合,.若,且“”是“”的充分不必要条件,求实数a的取值范围18.(12分)已知函数,.(1)当时,求不等式的解集;(2)若在上恒成立,求取值范围.19.(12分)如图,在四棱锥中,平面,四边形是菱形,,,是的中点(1)求证:;(2)已知二面角的余弦值为,求与平面所成角的正弦值20.(12分)椭圆的左右焦点分别为,,焦距为,为原点.椭圆上任意一点到,距离之和为.(1)求椭圆的标准方程;(2)过点的斜率为2的直线交椭圆于、两点,求的面积.21.(12分)已知抛物线C:y2=2px(p>0)的焦点为F,P(5,a)为抛物线C上一点,且|PF|=8(1)求抛物线C的方程;(2)过点F的直线l与抛物线C交于A,B两点,以线段AB为直径的圆过Q(0,﹣3),求直线l的方程22.(10分)已知直线恒过抛物线的焦点F(1)求抛物线的方程;(2)若直线与抛物线交于A,B两点,且,求直线的方程
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据题意作出示意图,根据圆的性质以及直线的倾斜角求解出的长度,再根据椭圆的定义求解出的关系,则椭圆离心率可求.【详解】设椭圆的左右焦点分别为,如下图:因为以线段为直径的圆恰好经过椭圆的左焦点,所以且,所以,又因为的倾斜角为,所以,所以为等边三角形,所以,所以,因为,所以,所以,所以,所以,故选:D.2、A【解析】构造函数,根据的单调性可得(3),从而得到,,的大小关系【详解】考查函数,则,在上单调递增,,(3),即,,故选:【点睛】本题考查了利用函数的单调性比较大小,考查了构造法和转化思想,属基础题3、C【解析】化简复数得,由其为纯虚数求参数a,进而求的模即可.【详解】由纯虚数,∴,解得:,则,故选:C4、B【解析】根据等比数列前项和的性质进行求解即可.【详解】因为是等比数列,所以成等比数列,即成等比数列,显然,故选:B5、C【解析】第n环天石心块数为,第一层共有n环,则是以9为首项,9为公差的等差数列,设为的前n项和,由题意可得,解方程即可得到n,进一步得到.【详解】设第n环天石心块数为,第一层共有n环,则是以9为首项,9为公差的等差数列,,设为的前n项和,则第一层、第二层、第三层的块数分别为,因为下层比中层多729块,所以,即即,解得,所以.故选:C【点晴】本题主要考查等差数列前n项和有关的计算问题,考查学生数学运算能力,是一道容易题.6、C【解析】首先求得椭圆方程,然后确定的最大值即可.【详解】由题意可得:,据此可得:,椭圆方程为,设椭圆上点的坐标为,则,故:,当时,.本题选择C选项.【点睛】本题主要考查椭圆方程问题,椭圆中的最值问题等知识,意在考查学生的转化能力和计算求解能力.7、B【解析】根据题意求得,化简得到,结合,求得的值,即可求解.【详解】在中,,,,AD为BC边上的高,可得,由又因为,所以,所以.故选:B.8、A【解析】把直线方程由一般式化成斜截式,即可得到直线在轴上的截距.【详解】由,可得,则直线在轴上的截距为3.故选:A9、A【解析】构造函数,分析该函数的定义域与奇偶性,利用导数分析出函数在上为增函数,从而可知该函数在上为减函数,综合可得出原不等式的解集.【详解】令,则函数的定义域为,且,则函数为偶函数,所以,,当时,,所以,函数在上为增函数,故函数在上为减函数,由等价于或:当时,由可得;当时,由可得.综上所述,不等式的解集为.故选:A.10、C【解析】根据题意可知当A为椭圆的上下顶点时,即可满足椭圆C上存在一点A,使得,由此可得,解此不等式可得答案.【详解】由椭圆的对称性可知,当A为椭圆的上下顶点时,最大,故只需即可满足题意,设O为坐标原点,则只需,即有,所以,解得,故选:C11、D【解析】由,,可求出公比,从而可求出等比数的通项公式,则可求出,得数列是一个等比数列,然后利用等比数的求和公式可求得答案【详解】由题得.所以,所以.所以,所以数列是一个等比数列.所以=.故选:D12、A【解析】先将双曲线的方程化为标准方程得,再根据双曲线渐近线方程求解即可.【详解】解:将双曲线的方程化为标准方程得,所以,所以其渐近线方程为:,即.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、3-5【解析】因为点在圆上,点在圆上,故两圆的圆心分别为半径分别为和两圆的圆心距为,故两圆相离,则最小值为,故答案为.考点:1、圆的方程及圆的几何性质;2、两点间的距离公式及最值问题.【方法点晴】本题主要考查圆的方程及几何性质、两点间的距离公式及最值问题的应用,属于难题.解决解析几何的最值问题一般有两种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将解析几何中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法,本题就是利用圆的几何性质,将的最小值转化两圆心的距离减半径解答的.14、3【解析】利用向量平行和向量垂直的性质列出方程组,求出,,再由空间向量坐标运算法则求出,由此能求出【详解】解:设,,向量,,,且,,,解得,,所以,,,故答案为:15、【解析】对原函数求导得,令,解得或,且所以原函数在上的最大值为考点:1.函数求导;2.利用导函数求最值16、【解析】根据所给条件可归纳出当时,,利用迭代法即可求解.【详解】因为,,,所以,即,,且是递减数列,数列是递增数列或(舍去),,,故可得当时,,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、【解析】由题设A是的真子集,结合已知集合的描述列不等式求a的范围.【详解】由“”是“”的充分不必要条件,即A是的真子集,又,,所以,可得,则实数a的取值范围为18、(1)或;(2).【解析】(1)解不含参数的一元二次不等式即可求出结果;(2)二次函数的恒成立问题需要对二次项系数是否为0进行分类讨论,即可求出结果.【详解】(1)当时,,即,解得或,所以,解集为或.(2)因为在上恒成立,①当时,恒成立;②当时,,解得,综上,的取值范围为.19、(1)证明见解析;(2).【解析】(1)由菱形及线面垂直的性质可得、,再根据线面垂直的判定、性质即可证结论.(2)构建空间直角坐标系,设,结合已知确定相关点坐标,进而求面、面的法向量,结合已知二面角的余弦值求出参数t,再根据空间向量夹角的坐标表示求与平面所成角的正弦值【小问1详解】由平面,平面,则,又是菱形,则,又,所以平面,平面所以E.【小问2详解】分别以,,为,,轴正方向建立空间直角坐标系,设,则,由(1)知:平面的法向量为,令面的法向量为,则,令,可得,因为二面角的余弦值为,则,可得,则,设与平面所成的角为,又,,所以.20、(1)(2)【解析】(1)根据题意和椭圆的定义可知a,c,再根据,即可求出b,由此即可求出椭圆的方程;(2)求出直线方程,将其与椭圆方程联立,根据弦长公式求出的长度,再根据点到直线的距离公式求出点O到直线AB的距离,再根据面积公式即可求出结果.【小问1详解】由题意可得,,∴,,,所以椭圆的标准方程为.【小问2详解】直线l的方程为,代入椭圆方程得,设,,则,,,∴,又∵点O到直线AB的距离,∴,即△OAB的面积为.21、(1);(2)2x﹣y﹣6=0﹒【解析】(1)根据抛物线焦半径公式构造方程求得,从而得到结果(2)设直线,代入抛物线方程可得韦达定理的形式,根据可构造方程求得,从而得到直线方程【小问1详解】由抛物线定义可知:,解得:,抛物线的方程为:【小问2详解】由抛物线方程
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025成都农商银行产业金融岗社会招聘10人考试题库附答案
- 2025年广西崇左凭祥市公安局面向社会公开招聘警务辅助人员61人备考题库附答案
- 2026重庆医科大学附属大足医院招聘4人笔试备考试题及答案解析
- 2026台州市计量技术研究院编外招聘1人笔试备考题库及答案解析
- 2026年昆明冶金高等专科学校高职单招职业适应性测试模拟试题有答案解析
- 2026重庆市城投路桥管理有限公司食堂炊事员岗位2人笔试参考题库及答案解析
- (能力提升)2025-2026学年下学期人教统编版小学语文五年级第一单元练习卷
- 2026年《东方烟草报》社有限公司高校毕业生招聘(3名)笔试备考试题及答案解析
- 2026年安徽工贸职业技术学院单招职业技能考试参考题库带答案解析
- 2026福建石狮国有投资发展集团有限责任公司招聘2人笔试参考题库及答案解析
- 高二化学上学期期末试题带答案解析
- 高标准农田建设培训课件
- 体检中心收费与财务一体化管理方案
- 解答题 概率与统计(专项训练12大题型+高分必刷)(原卷版)2026年高考数学一轮复习讲练测
- 2024-2025学年北京市海淀区第二十中学高二上学期期末物理试题(含答案)
- 金属加工工艺规划
- 四川省内江市2024-2025学年高二上学期期末检测化学试题
- 送你一朵小红花评语
- 广东省深圳市龙岗区2024-2025学年二年级上学期学科素养期末综合数学试卷(含答案)
- 临床成人吞咽障碍患者口服给药护理
- (16)普通高中体育与健康课程标准日常修订版(2017年版2025年修订)
评论
0/150
提交评论