2026届全国18名校大联考数学高一上期末检测试题含解析_第1页
2026届全国18名校大联考数学高一上期末检测试题含解析_第2页
2026届全国18名校大联考数学高一上期末检测试题含解析_第3页
2026届全国18名校大联考数学高一上期末检测试题含解析_第4页
2026届全国18名校大联考数学高一上期末检测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届全国18名校大联考数学高一上期末检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,则角的终边在A.第一象限 B.第二象限C.第三象限 D.第四象限2.圆O1:x2+y2﹣6x+4y+12=0与圆O2:x2+y2﹣14x﹣2y+14=0的位置关系是()A.相离 B.内含C.外切 D.内切3.如图所示韦恩图中,若A={1,2,3,4,5},B={3,4,5,6,7},则阴影部分表示的集合是()A.2,3,4,5,6, B.2,3,4,C.4,5,6, D.2,6,4.已知是定义在上的奇函数且单调递增,,则的取值范围是()A. B.C. D.5.根据表格中的数据可以判定方程的一个根所在的区间为()1234500.6931.0991.3861.60910123A. B.C. D.6.已知点P(3,4)在角的终边上,则的值为()A B.C. D.7.著名数学家、物理学家牛顿曾提出:物体在空气中冷却,如果物体的初始温度为,空气温度为,则分钟后物体的温度(单位:)满足:.若常数,空气温度为,某物体的温度从下降到,大约需要的时间为()(参考数据:)A.分钟 B.分钟C.分钟 D.分钟8.已知a>b,则下列式子中一定成立的是()A. B.|a|>|b|C. D.9.若,则它是()A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角10.已知函数,则,()A.4 B.3C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数y=cos2x-sinx的值域是__________________12.已知函数,若函数图象恒在函数图象的下方,则实数的取值范围是__________.13.已知,则___________14.已知函数的最大值与最小值之差为,则______15.已知函数①当a=1时,函数的值域是___________;②若函数的图像与直线y=1只有一个公共点,则实数a的取值范围是___________16.已知,则____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某高校的入学面试中有3道难度相当的题目,李明答对每道题的概率都是0.6,若每位面试者都有三次机会,一旦答对抽到的题目,则面试通过,否则就一直抽题到第三次为止.用Y表示答对题目,用N表示没有答对的题目,假设对抽到的不同题目能否答对是独立的,那么:(1)在图的树状图中填写样本点,并写出样本空间;(2)求李明最终通过面试的概率.18.已知函数,函数的图像与的图像关于对称.(1)求的值;(2)若函数在上有且仅有一个零点,求实数k取值范围;(3)是否存在实数m,使得函数在上的值域为,若存在,求出实数m的取值范围;若不存在,说明理由.19.某地区今年1月,2月,3月患某种传染病的人数分别为52,54,58为了预测以后各月的患病人数,甲选择的了模型,乙选择了模型,其中y为患病人数,x为月份数,a,b,c,p,q,r都是常数,结果4月,5月,6月份的患病人数分别为66,82,115,1你认为谁选择的模型较好?需说明理由2至少要经过多少个月患该传染病的人数将会超过2000人?试用你选择的较好模型解决上述问题20.已知函数,.(1)运用五点作图法在所给坐标系内作出在内的图像(画在答题卡上);(2)求函数的对称轴,对称中心和单调递增区间.21.已知.(1)求函数的定义域;(2)判断函数的奇偶性,并加以说明;(3)求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】直接由实数大小比较角的终边所在象限,,所以的终边在第三象限考点:考查角的终边所在的象限【易错点晴】本题考查角的终边所在的象限,不明确弧度制致误2、D【解析】先求出两圆的圆心距,再比较圆心距和两个半径的关系得解.【详解】由题得圆O1:它表示圆心为O1(3,-2)半径为1的圆;圆O2:,它表示圆心为O2(7,1),半径为6的圆.两圆圆心距为,所以两圆内切.故选:D【点睛】本题主要考查两圆位置关系的判定,意在考查学生对这些知识的理解掌握水平.3、D【解析】根据图象确定阴影部分的集合元素特点,利用集合的交集和并集进行求解即可【详解】阴影部分对应的集合为{x|x∈A∪B且x∉A∩B},∵A∪B={1,2,3,4,5,6,7},A∩B={3,4,5},∴阴影部分的集合为{1,2,6,7},故选D【点睛】本题主要考查集合的运算,根据Venn图表示集合关系是解决本题的关键4、A【解析】根据函数的奇偶性,把不等式转化为,再结合函数的单调性,列出不等式组,即可求解.【详解】由题意,函数是定义在上的奇函数,所以,则不等式,可得,又因为单调递增,所以,解得,故选:.【点睛】求解函数不等式的方法:1、解函数不等式的依据是函数的单调性的定义,具体步骤:①将函数不等式转化为的形式;②根据函数的单调性去掉对应法则“”转化为形如:“”或“”的常规不等式,从而得解.2、利用函数的图象研究不等式,当不等式问题不能用代数法求解但其与函数有关时,常将不等式问题转化为两函数的图象上、下关系问题,从而利用数形结合求解.5、C【解析】令,由表中数据结合零点存在性定理即可得解.【详解】令,由表格数据可得.由零点存在性定理可知,在区间内必有零点.故选C.【点睛】本题主要考查了零点存在性定理,属于基础题.6、D【解析】利用三角函数的定义即可求出答案.【详解】因为点P(3,4)在角的终边上,所以,,故选:D【点睛】本题考查了三角函数的定义,三角函数诱导公式,属于基础题.7、D【解析】由已知条件得出,,,代入等式,求出即可得出结论.【详解】由题知,,,所以,,可得,所以,,.故选:D.8、D【解析】利用特殊值法以及的单调性即可判断选项的正误.【详解】对于A,若则,故错误;对于B,若则,故错误;对于C,若则,故错误;对于D,由在上单调增,即,故正确.故选:D9、C【解析】根据象限角的定义判断【详解】因为,所以是第三象限角故选:C10、D【解析】根据分段函数解析式代入计算可得;【详解】解:因为,,所以,所以故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】将原函数转换成同名三角函数即可.【详解】,,当时取最大值,当时,取最小值;故答案为:.12、【解析】作出和时,两个函数图象,结合图象分析可得结果.【详解】当时,,,两个函数的图象如图:当时,,,两个函数的图象如图:要使函数的图象恒在函数图象的下方,由图可知,,故答案为:.13、【解析】根据同角三角函数的关系求得,再运用正弦、余弦的二倍角公式求得,由正弦和角公式可求得答案.【详解】解:因为,所以,所以,所以.故答案为:.14、或.【解析】根据幂函数的性质,结合题意,分类讨论,利用单调性列出方程,即可求解.【详解】由题意,函数,当时,函数在上为单调递增函数,可得,解得;当时,显然不成立;当时,函数在上为单调递减函数,可得,解得,综上可得,或.故答案为:或.15、①.(-∞,1]②.(-1,1]【解析】①分段求值域,再求并集可得的值域;②转化为=在上与直线只有一个公共点,分离a求值域可得实数a的取值范围【详解】①当a=1时,即当x≤1时,,当x>1时,,综上所述当a=1时,函数的值域是,②由无解,故=在上与直线只有一个公共点,则有一个零点,即实数的取值范围是.故答案为:;.16、【解析】求得函数的最小正周期为,进而计算出的值(其中),再利用周期性求解即可.【详解】函数的最小正周期为,当时,,,,,,,所以,,,因此,.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据树状图表示出样本空间;(2)先计算李明未通过面试的概率,再由对立事件的计算公式求出通过面试的概率.【小问1详解】由题意,样本空间为.样本点的填写如图所示,【小问2详解】可知李明未通过面试的概率为,所以李明通过面试的概率为18、(1)(2)或(3)存在,【解析】(1)由题意,将代入可得答案.(2)由题意即关于x的方程在上有且仅有一个实根,设,作出其函数图像,数形结合可得答案.(3)设记,则函数在上单调递增,根据题意若存在实数m满足条件,则a,b是方程的两个不等正根,由二次方程的根的分布的条件可得答案.【小问1详解】由题意,,所以【小问2详解】由题意即关于x的方程在上有且仅有一个实根,设,作出函数在上的图像(如下图),,由题意,直线与该图像有且仅有一个公共点,所以实数k的取值范围是或【小问3详解】记,其中,在定义域上单调递增,则函数在上单调递增,若存在实数m,使得的值域为,则,即a,b是方程的两个不等正根,即a,b是的两个不等正根,所以解得,所以实数m的取值范围是.【点睛】思路点睛:函数的零点问题可转化为两个熟悉函数的图象的交点问题来处理,而二次方程的零点问题,可结合判别式的正负、特殊点处的函数值的正负、对称轴的位置等来处理.19、(1)应将作为模拟函数,理由见解析;(2)个月.【解析】根据前3个月的数据求出两个函数模型的解析式,再计算4,5,6月的数据,与真实值比较得出结论;由(1),列不等式求解,即可得出结论【详解】由题意,把,2,3代入得:,解得,,,所以,所以,,;把,2,3代入,得:,解得,,,所以,所以,,;、、更接近真实值,应将作为模拟函数令,解得,至少经过11个月患该传染病的人数将会超过2000人【点睛】本题主要考查了函数的实际应用问题,以及指数与对数的运算性质的应用,其中解答中认真审题,正确理解题意,求解函数的解析式是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.20、(1)详见解析(2)函数的对称轴为;对称中心为;单调递增区间为:【解析】(1)五点法作图;(2)整体代入求对称轴,对

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论