辽宁省大连市一零三中学2026届数学高二上期末复习检测试题含解析_第1页
辽宁省大连市一零三中学2026届数学高二上期末复习检测试题含解析_第2页
辽宁省大连市一零三中学2026届数学高二上期末复习检测试题含解析_第3页
辽宁省大连市一零三中学2026届数学高二上期末复习检测试题含解析_第4页
辽宁省大连市一零三中学2026届数学高二上期末复习检测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

辽宁省大连市一零三中学2026届数学高二上期末复习检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.点是正方体的底面内(包括边界)的动点.给出下列三个结论:①满足的点有且只有个;②满足的点有且只有个;③满足平面的点的轨迹是线段.则上述结论正确的个数是()A. B.C. D.2.十二平均律是我国明代音乐理论家和数学家朱载堉发明的.明万历十二年(公元1584年),他写成《律学新说》,提出了十二平均律的理论.十二平均律的数学意义是:在1和2之间插入11个正数,使包含1和2的这13个数依次成递增的等比数列.依此规则,插入的第四个数应为()A. B.C. D.3.已知数列的前n项和为,且对任意正整数n都有,若,则()A.2019 B.2020C.2021 D.20224.已知向量是两两垂直的单位向量,且,则()A.5 B.1C.-1 D.75.若是函数的极值点,则函数()A.有最小值,无最大值 B.有最大值,无最小值C.有最小值,最大值 D.无最大值,无最小值6.已知双曲线的焦距为,且双曲线的一条渐近线与直线平行,则双曲线的方程为()A. B.C. D.7.在空间直角坐标系中,点关于平面的对称点的坐标是()A. B.C. D.8.若直线过点(1,2),(4,2+),则此直线的倾斜角是()A.30° B.45°C.60° D.90°9.双曲线的左、右焦点分别为、,P为双曲线C的右支上一点.以O为圆心a为半径的圆与相切于点M,且,则该双曲线的渐近线为()A. B.C. D.10.已知,分别为双曲线:的左,右焦点,以为直径的圆与双曲线的右支在第一象限交于点,直线与双曲线的右支交于点,点恰好为线段的三等分点(靠近点),则双曲线的离心率等于()A. B.C. D.11.执行如图所示的程序框图,若输入,则输出的m的值是()A.-1 B.0C.0.1 D.112.设是等差数列的前项和,已知,,则等于()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若椭圆的焦点在轴上,过点作圆的切线,切点分别为,,直线恰好经过椭圆的上焦点和右顶点,则椭圆的方程是________________14.已知蜥蜴的体温与阳光照射的关系可近似为,其中为蜥蜴的体温(单位:℃)为太阳落山后的时间(单位:).当________时,蜥蜴体温的瞬时变化率为15.若等比数列满足,则的前n项和____________16.在数列中,,且,则_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数f(x)=ax3+bx2﹣3x在x=﹣1和x=3处取得极值.(1)求a,b的值(2)求f(x)在[﹣4,4]内的最值.18.(12分)已知二次函数,令,解得.(1)求二次函数的解析式;(2)当关于的不等式恒成立时,求实数的范围.19.(12分)大学生王蕾利用暑假参加社会实践,对机械销售公司月份至月份销售某种机械配件的销售量及销售单价进行了调查,销售单价和销售量之间的一组数据如表所示:月份销售单价(元)销售量(件)(1)根据至月份数据,求出关于的回归直线方程;(2)若剩下的月份的数据为检验数据,并规定由回归直线方程得到的估计数据与检验数据的误差不超过元,则认为所得到的回归直线方程是理想的,试问(1)中所得到的回归直线方程是否理想?(注:,,参考数据:,)20.(12分)已知定义域为的函数是奇函数,其中为指数函数且的图象过点(1)求的表达式;(2)若对任意的.不等式恒成立,求实数的取值范围;21.(12分)已知函数.(Ⅰ)求的单调递减区间;(Ⅱ)若当时,恒成立,求实数a的取值范围.22.(10分)某电脑公司为调查旗下A品牌电脑的使用情况,随机抽取200名用户,根据不同年龄段(单位:岁)统计如下表:分组频率/组距0.010.040.070.060.02(1)根据上表,试估计样本的中位数、平均数(同一组数据以该组区间的中点值为代表,结果精确到0.1);(2)按照年龄段从内的用户中进行分层抽样,抽取6人,再从中随机选取2人赠送小礼品,求恰有1人在内的概率

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】对于①,根据线线平行的性质可知点即为点,因此可判断①正确;对于②,根据线面垂直的判定可知平面,,由此可判定的位置,进而判定②的正误;对于③,根据面面平行可判定平面平面,因此可判断此时一定落在上,由此可判断③的正误.【详解】如图:对于①,在正方体中,,若异于,则过点至少有两条直线和平行,这是不可能的,因此底面内(包括边界)满足的点有且只有个,即为点,故①正确;对于②,正方体中,平面,平面,所以,又,所以,而,平面,故平面,因此和垂直的直线一定落在平面内,由是平面上的动点可知,一定落在上,这样的点有无数多个,故②错误;对于③,,平面,则平面,同理平面,而,所以平面平面,而平面,所以一定落在平面上,由是平面上的动点可知,此时一定落在上,即点的轨迹是线段,故③正确,故选:C.2、C【解析】先求出等比数列的公比,再由等比数列的通项公式即可求解.【详解】用表示这个数列,依题意,,则,,第四个数即.故选:C.3、C【解析】先令代入中,求得,再根据递推式得到,将与已知相减,可判断数列是等比数列,进而确定,求得答案.【详解】因为,令,则,又,故,即,故数列是等比数列,则,所以,所以,故选:C.4、B【解析】根据单位向量的定义和向量的乘法运算计算即可.【详解】因为向量是两两垂直的单位向量,且所以.故选:B5、A【解析】对求导,根据极值点求参数a,再由导数研究其单调性并判断其最值情况.【详解】由题设,且,∴,可得.∴且,当时,递减;当时,递增;∴有极小值,无极大值.综上,有最小值,无最大值.故选:A6、B【解析】根据焦点在x轴上的双曲线渐近线斜率为±可求a,b关系,再结合a,b,c关系即可求解﹒【详解】∵双曲线1(a>0,b>0)的焦距为2,且双曲线的一条渐近线与直线2x+y=0平行,∴,∴b=2a,∵c2=a2+b2,∴a=1,b=2,∴双曲线的方程为故选:B7、C【解析】根据空间里面点关于面对称的性质即可求解.【详解】在空间直角坐标系中,点关于平面的对称点的坐标是.故选:C.8、A【解析】求出直线的斜率,由斜率得倾斜角【详解】由题意直线斜率为,所以倾斜角为故选:A9、A【解析】连接、,利用中位线定理和双曲线定义构建参数关系,即求得渐近线方程.【详解】如图,连接、,∵M是的中点,∴是的中位线,∴,且,根据双曲线的定义,得,∴,∵与以原点为圆心a为半径的圆相切,∴,可得,中,,即得,,解得,即,得.由此得双曲线的渐近线方程为.故选:A.【点睛】本题考查了双曲线的定义的应用和渐近线的求法,属于中档题.10、C【解析】设,,根据双曲线的定义可得,,在中由勾股定理列方程可得,在中由勾股定理可得关于,的方程,再由离心率公式即可求解.【详解】设,则,由双曲线的定义可得:,,因为点在以为直径的圆上,所以,所以,即,解得:,在中,,,,由可得,即,所以双曲线离心率为,故选:C.第II卷(非选择题11、B【解析】计算后,根据判断框直接判断即可得解.【详解】输入,计算,判断为否,计算,输出.故选:B.12、C【解析】依题意有,解得,所以.考点:等差数列的基本概念.【易错点晴】本题主要考查等差数列的基本概念.在解有关等差数列的问题时可以考虑化归为和等基本量,通过建立方程(组)获得解.即等差数列的通项公式及前项和公式,共涉及五个量,知其中三个就能求另外两个,即知三求二,多利用方程组的思想,体现了用方程的思想解决问题,注意要弄准它们的值.运用方程的思想解等差数列是常见题型,解决此类问题需要抓住基本量、,掌握好设未知数、列出方程、解方程三个环节,常通过“设而不求,整体代入”来简化运算二、填空题:本题共4小题,每小题5分,共20分。13、【解析】设过点的圆的切线为,分类讨论求得直线分别与圆的切线,求得直线的方程,从而得到直线与轴、轴的交点坐标,得到椭圆的右焦点和上顶点,进而求得椭圆的方程.【详解】设过点的圆的切线分别为,即,当直线与轴垂直时,不存在,直线方程为,恰好与圆相切于点;当直线与轴不垂直时,原点到直线的距离为,解得,此时直线的方程为,此时直线与圆相切于点,因此,直线的斜率为,直线的方程为,所以直线交轴交于点,交于轴于点,椭圆的右焦点为,上顶点为,所以,可得,所以椭圆的标准方程为.故答案为:.14、5【解析】求得导函数,令,计算即可得出结果.【详解】,,令,得:.解得:.时刻min时,蜥蜴的体温的瞬时变化率为故答案为:5.15、##【解析】由已知及等比数列的通项公式得到首项和公比,再利用前n项和公式计算即可.【详解】设等比数列的公比为,由已知,得,解得,所以.故答案为:16、##【解析】根据数列的递推公式,发现规律,即数列为周期数列,然后求出即可【详解】根据题意可得:,,,故数列为周期数列可得:故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)a,b=﹣1(2)f(x)min=,f(x)max=【解析】(1)先对函数求导,由题意可得=3ax2+2bx﹣3=0的两个根为﹣1和3,结合方程的根与系数关系可求,(2)由(1)可求,然后结合导数可判断函数的单调性,进而可求函数的最值.【详解】解:(1)=3ax2+2bx﹣3,由题意可得=3ax2+2bx﹣3=0的两个根为﹣1和3,则,解可得a,b=-1,(2)由(1),易得f(x)在,单调递增,在上单调递减,又f(﹣4),f(﹣1),f(3)=﹣9,f(4),所以f(x)min=f(﹣4),f(x)max=f(﹣1).【点睛】本题考查利用极值求函数的参数,以及利用导数求函数的最值问题,属于中档题18、(1);(2).【解析】(1)利用一元二次不等式的解集是,得到-3,2是方程的两个根,根据根与系数之间的关系,即可求,;(2)根据题意,得出不等式恒成立,则,解不等式即可求出实数的范围.详解】解:(1)由题可知,,解得:,则-3,2是方程的两个根,且,所以由根与系数之间的关系得,解得,所以二次函数的解析式为:;(2)由于不等式恒成立,即恒成立,则,解得:,所以实数的范围为.【点睛】本题考查由一元二次不等式的解集求函数解析式,以及不等式恒成立问题求参数范围,考查根与系数的关系和一元二次函数的图象和性质,考查化简运算能力19、(1)(2)回归直线方程是理想的【解析】(1)根据表格数据求得,利用最小二乘法可求得回归直线方程;(2)令回归直线中的可求得估计数据,对比检验数据即可确定结论.小问1详解】由表格数据可知:,,,则,关于的回归直线方程为;【小问2详解】令回归直线中的,则,,(1)中所得到的回归直线方程是理想的.20、(1);(2).【解析】(1)设(且),因为的图象过点,求得a的值,再根据函数f(x)是奇函数,利用f(0)=0即可求得n的值,得到f(x)的解析式,检验是奇函数即可;(2)将分式分离常数后,利用指数函数的性质可以判定f(x)在R上单调递减,进而结合奇函数的性质将不等式转化为二次不等式,根据二次函数的图象和性质,求得对于对任意的恒成立时a的取值范围即可.【详解】解:(1)由题意,设(且),因为的图象过点,可得,解得,即,所以,又因为为上的奇函数,可得,即,解得,经检验,符合,所以(2)由函数,可得在上单调递减,又因为为奇函数,所以,所以,即,又因为对任意的,不等式恒成立,令,即对任意的恒成立,可得,即,解得,所以实数的取值范围为【点睛】本题考查函数的奇偶性,指数函数及其性质和函数不等式恒成立问题,关键是利用函数的单调性和奇偶性将不等式转化为二次不等式在闭区间上恒成立问题,然后利用二次函数的图象转化为二次函数的端点值满足的条件.另外注意,第一问中,利用特值f(0)=0求得解析式后,要注意检验对于任意的实数x,f(x)=-f(-x)恒成立.21、(Ⅰ)单调递减区间为;(Ⅱ).【解析】(Ⅰ)求函数的导函数,求的区间即为所求减区间;(Ⅱ)化简不等式,变形为,即求,令,求的导函数判断的单调性求出最小值,可求出的范围.【详解】(Ⅰ)由题可知.令,得,从而,∴的单调递减区间为.(Ⅱ)由可得,即当时,恒成立.设,则.令,则当时,.∴当时,单调递增,,则当时,,单调递减;当时,,单调递增.∴,∴.【点睛】思路点睛:在函数中,恒成立问题,可选择参变分离的方法,分离出参数转化为或,转化为求函数的最值求出的范围.22、(1)中位数为38.6,平均数为38.5岁;(2).【解析】(1)由中位数分数据两边的频率相等,列方程求中位数;根据各组数据的中点数乘以频

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论