版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省宜昌市一中、恩施高中2026届高二数学第一学期期末统考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图所示,为了测量A,B处岛屿的距离,小张在D处观测,测得A,B分别在D处的北偏西、北偏东方向,再往正东方向行驶10海里至C处,观测B在C处的正北方向,A在C处的北偏西方向,则A,B两处岛屿间的距离为()海里.A. B.C. D.102.若函数f(x)=x2+x+1在区间内有极值点,则实数a的取值范围是()A. B.C. D.3.金刚石的成分为纯碳,是自然界中天然存在的最坚硬物质,它的结构是由8个等边三角形组成的正八面体.若某金刚石的棱长为2,则它的体积为()A. B.C. D.4.《周髀算经》中有这样一个问题,从冬至之日起,小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气日影长依次成等差数列,若冬至、大寒、雨水的日影长的和为36.3尺,小寒、惊蛰、立夏的日影长的和为18.3尺,则冬至的日影长为()A4尺 B.8.5尺C.16.1尺 D.18.1尺5.美学四大构件是:史诗、音乐、造型(绘画、建筑等)和数学.素描是学习绘画的必要一步,它包括明暗素描和结构素描,而学习几何体结构素描是学习素描最重要的一步.某同学在画切面圆柱体(用与圆柱底面不平行的平面去截圆柱,底面与截面之间的部分叫做切面圆柱体,原圆柱的母线被截面所截剩余的部分称为切面圆柱体的母线)的过程中,发现“切面”是一个椭圆,若切面圆柱体的最长母线与最短母线所确定的平面截切面圆柱体得到的截面图形是有一个底角为60度的直角梯形,则该椭圆的离心率为()A. B.C. D.6.已知双曲线的离心率为,则该双曲线的渐近线方程为()A. B.C. D.7.已知f(x)=x3+(a-1)x2+x+1没有极值,则实数a的取值范围是()A.[0,1] B.(-∞,0]∪[1,+∞)C.[0,2] D.(-∞,0]∪[2,+∞)8.已知数列满足:,数列的前n项和为,若恒成立,则的取值范围是()A. B.C. D.9.“”是“”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.即不充分也不必要条件10.若函数在区间上有两个极值点,则实数的取值范围是()A. B.C. D.11.已知点分别是椭圆的左、右焦点,点P在此椭圆上,,则的面积等于A. B.C. D.12.已知抛物线的焦点为F,过点F作倾斜角为的直线l与抛物线交于两点,则POQ(O为坐标原点)的面积S等于()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知,,且,则的值是_________.14.已知圆:,圆:,则圆与圆的位置关系是______15.在空间直角坐标系中,点到x轴的距离为___________.16.已知等差数列满足,请写出一个符合条件的通项公式______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知O为坐标原点,点,设动点W到直线的距离为d,且,.(1)记动点W的轨迹为曲线C,求曲线C的方程;(2)若直线l与曲线C交于A,B两点,直线与曲线C交于,两点,直线l与的交点为P(P不在曲线C上),且,设直线l,的斜率分别为k,.求证:为定值.18.(12分)如图,四棱锥中,底面为正方形,底面,,点,,分别为,,的中点,平面棱(1)试确定的值,并证明你的结论;(2)求平面与平面夹角的余弦值19.(12分)已知椭圆的离心率为,右焦点到上顶点的距离为.(1)求椭圆的方程;(2)斜率为2的直线经过椭圆的左焦点,且与椭圆相交于两点,求的面积.20.(12分)如图,在四棱锥中,侧面底面ABCD,侧棱,底面ABCD为直角梯形,其中,,,(1)求证:平面ACF;(2)在线段PB上是否存在一点H,使得CH与平面ACF所成角的正弦值为?若存在,求出线段PH的长度;若不存在,请说明理由21.(12分)如图,是底面边长为1的正三棱锥,分别为棱上的点,截面底面,且棱台与棱锥的棱长和相等.(棱长和是指多面体中所有棱的长度之和)(1)求证:为正四面体;(2)若,求二面角的大小;(3)设棱台的体积为,是否存在体积为且各棱长均相等的直四棱柱,使得它与棱台有相同的棱长和?若存在,请具体构造出这样的一个直四棱柱,并给出证明;若不存在,请说明理由.22.(10分)如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,AD∥BC,AD⊥CD,且AD=CD=1,BC=2,PA=1(1)求证:AB⊥PC;(2)点M在线段PD上,二面角M﹣AC﹣D的余弦值为,求三棱锥M﹣ACP体积
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】分别在和中,求得的长度,再在中,利用余弦定理,即可求解.【详解】如图所示,可得,所以,在中,可得,在直角中,因为,所以,在中,由余弦定理可得,所以.故选:C.2、C【解析】若f(x)=x2+x+1在区间内有极值点,则f'(x)=x2-ax+1在区间内有零点,且零点不是f'(x)的图象顶点的横坐标.由x2-ax+1=0,得a=x+.因为x∈,y=x+的值域是,当a=2时,f'(x)=x2-2x+1=(x-1)2,不合题意.所以实数a的取值范围是,故选C.3、C【解析】由几何关系先求出一个正四面体的高,再结合锥体体积公式即可求解正八面体的体积.【详解】如图,设底面中心为,连接,由几何关系知,,则正八面体体积为.故选:C4、C【解析】设等差数列,用基本量代换列方程组,即可求解.【详解】由题意,从冬至之日起,小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气的日影长依次成等差数列,记为数列,公差为d,则有,即,解得:,即冬至的日影长为16.1尺.故选:C5、A【解析】设圆柱的底面半径为,由题意知,,椭圆的长轴长,短轴长为,可以求出的值,即可得离心率.【详解】设圆柱的底面半径为,依题意知,最长母线与最短母线所在截面如图所示从而因此在椭圆中长轴长,短轴长,,故选:A【点睛】本题主要考查了椭圆的定义和椭圆离心力的求解,属于基础题.6、C【解析】求得,由此求得双曲线的渐近线方程.【详解】离心率,则,所以渐近线方程.故选:C7、C【解析】求导得,再解不等式即得解.【详解】由得,根据题意得,解得故选:C8、D【解析】由于,所以利用裂项相消求和法可求得,然后由可得恒成立,再利用基本不等式求出的最小值即可【详解】,故,故恒成立等价于,即恒成立,化简得到,因为,当且仅当,即时取等号,所以故选:D9、D【解析】根据充分条件、必要条件的判定方法,结合不等式的性质,即可求解.【详解】由,可得,即,当时,,但的符号不确定,所以充分性不成立;反之当时,也不一定成立,所以必要性不成立,所以是的即不充分也不必要条件.故选:D.10、D【解析】由题意,即在区间上有两个异号零点,令,利用函数的单调性与导数的关系判断单调性,数形结合即可求解【详解】解:由题意,即在区间上有两个异号零点,构造函数,则,令,得,令,得,所以函数在上单调递增,在上单调递减,又时,,时,,且,所以,即,所以的范围故选:D11、B【解析】根据椭圆标准方程,可得,结合定义及余弦定理可求得值,由及三角形面积公式即可求解.【详解】椭圆则,所以,则由余弦定理可知代入化简可得,则,故选:B.【点睛】本题考查了椭圆的标准方程及几何性质的简单应用,正弦定理与余弦定理的简单应用,三角形面积公式的用法,属于基础题.12、A【解析】由抛物线的方程可得焦点的坐标,由题意设直线的方程,与抛物线的方程,联立求出两根之和及两根之积,进而求出,的纵坐标之差的绝对值,代入三角形的面积公式求出面积【详解】抛物线的焦点为,,由题意可得直线的方程为,设,,,,联立,整理可得:,则,,所以,所以,故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据空间向量可得,结合计算即可.【详解】由题意知,,所以,解得.故答案:314、相交【解析】把两个圆的方程化为标准方程,分别找出两圆的圆心坐标和半径,利用两点间的距离公式求出两圆心的距离,与半径和与差的关系比较即可知两圆位置关系.【详解】化为,化为,则两圆圆心分别为:,,半径分别为:,圆心距为,,所以两圆相交.故答案为:相交.15、【解析】由空间直角坐标系中点到轴的距离为计算可得【详解】解:空间直角坐标系中,点到轴的距离为故答案为:16、3(答案不唯一)【解析】由已知条件结合等差数列的性质可得,则,从而可写出数列的一个通项公式【详解】因为是等差数列,且,所以,当公差为0时,;公差为1时,;…故答案为:3(答案为唯一)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)证明见解析【解析】(1)设点,由即所以化简即可得到答案.(2)设,,设直线l的方程为:与(1)中W的轨迹方程联立,得出韦达定理,求出,同理设直线的方程为:,得出,再根据从而可证明结论.【小问1详解】设点,因为,所以,因为,所以所以所以所以所以C的方程为:【小问2详解】设,,设直线l的方程为:,则由得:所以,,所以所以设直线的方程为:,则同理可得因所以即,即,即解得,即所以为定值.18、(1),证明见解析(2)【解析】(1),利用线面平行的判定和性质可得答案;(2)以为原点,所在直线分别为的正方向建立空间直角坐标系,求出平面的法向量和平面的法向量由向量夹角公式可得答案.【小问1详解】.证明如下:在△中,因为点分别为的中点,所以//.又平面,平面,所以//平面.因为平面,平面平面,所以//所以//.在△中,因为点为的中点,所以点为的中点,即.【小问2详解】因为底面为正方形,所以.因为底面,所以,.如图,建立空间直角坐标系,则,,,因为分别为的中点,所以.所以,.设平面的法向量,则即令,于.又因为平面的法向量为,所以所以平面与平面夹角的余弦值为.19、(1);(2).【解析】(1)由题可得,即求;(2)由题可设直线方程,联立椭圆方程,利用韦达定理法结合三角形面积公式即求.【小问1详解】由题意可得,解得,所以椭圆的方程为.【小问2详解】解法一:由(1)得,则由题意可设直线,代入椭圆方程整理可得,设,则,则由弦长公式知,又设到的距离为,则由点到直线距离公式可得,的面积,即所求面积为.解法二:由(1)得,则由题意可设直线,即代入椭圆方程整理可得,设,则,,则的面积,即所求面积为.20、(1)证明见解析(2)存在,的长为或,理由见解析.【解析】(1)建立空间直角坐标系,利用向量法证得平面.(2)设,求出,根据与平面所成角的正弦值列方程,由此求得,进而求得的长.小问1详解】依题意,在四棱锥中,侧面底面ABCD,侧棱,底面ABCD为直角梯形,其中,,,,以为空间坐标原点建立如图所示空间直角坐标系,,,设平面法向量为,则,故可设,由于,所以平面.【小问2详解】存在,理由如下:设,,,,依题意与平面所成角的正弦值为,即,,解得或.,即的长为或,使与平面所成角的正弦值为.21、(1)证明见解析;(2);(3)存在,构造棱长均为,底面相邻两边的夹角为的直四棱柱即满足条件.【解析】(1)由棱台、棱锥的棱长和相等可得,再由面面平行有,结合正四面体的结构特征即可证结论.(2)取BC的中点M,连接PM、DM、AM,由线面垂直的判定可证平面PAM,即是二面角的平面角,进而求其大小.(3)设直四棱柱的棱长均为,底面相邻两边的夹角为,结合已知条件用表示出即可确定直四棱柱.【小问1详解】由棱台与棱锥的棱长和相等,∴,故.又截面底面ABC,则,,∴,从而,故为正四面体.【小问2详解】取BC的中点M,连接PM、DM、AM,由,,得:平面PAM,而平面PAM,故,从而是二面角的平面角.由(1)知,三棱锥的各棱长均为1,所以.由D是PA的中点,得.在Rt△ADM中,,故二面角的大小为.【小问3详解】存在满足条件的直四棱柱.棱台的棱长和为定值6,体积为V.设直四棱柱的棱长均为,底面相邻两边的夹角为,则该四棱柱的棱长和为6,体积为.因为正四面体的体积是,所以,,从而,故构造棱长均为,底面相邻两边的夹角为的直四棱柱,即满足条件.22、(1)证明见解析(2)【解析】(1)将问题转化为证明AB⊥平面PAC,然后结合已知可证;(2)建立空间直角坐标系,用向量法结合已知先确定点M位置,然后转化法求体积可得.【小问1详解】由题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 人教部编版五年级语文下册《青山处处埋忠骨》公开课教学课件
- 2025北京三十五中高一10月月考英语试题含答案
- 2026年关于海山乡便民服务中心招聘工作人员的备考题库及答案详解1套
- 2026年佛冈县石角镇公开招聘新城社区专职网格员备考题库及答案详解1套
- 2026年中冶京诚工程技术有限公司招聘备考题库及答案详解一套
- 2026年关于南通轨道资源开发有限公司公开招聘工作人员的备考题库完整答案详解
- 2026年中冶北方(大连)工程技术有限公司招聘备考题库及答案详解一套
- 2026年南平市属医疗卫生单位第九届“人才·南平校园行”紧缺急需人才招聘备考题库及一套参考答案详解
- 2026年乳源瑶族自治县住房和城乡建设管理局公开招聘城市管理协管人员的备考题库及一套完整答案详解
- 文字录入新版
- 2025年熔化焊接与热切割作业考试题库及答案
- 账务清理合同(标准版)
- 质量互变课件
- 神经内科脑疝术后护理手册
- 幼儿园重大事项社会稳定风险评估制度(含实操模板)
- 2026年包头轻工职业技术学院单招职业适应性测试题库附答案
- 2025至2030中国应急行业市场深度分析及发展趋势与行业项目调研及市场前景预测评估报告
- 2025年中厚钢板行业分析报告及未来发展趋势预测
- 基于多因素分析的新生儿重症监护室患儿用药系统风险评价模型构建与实证研究
- 2025新能源光伏、风电发电工程施工质量验收规程
- 电磁炮课件教学课件
评论
0/150
提交评论