版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届四川雅安中学数学高一上期末联考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,则下列不等式一定成立的是()A. B.C. D.2.若函数在区间上单调递增,则实数的取值范围为()A B.C. D.3.若,则cos2x=()A. B.C. D.4.下列函数中,在上是增函数的是A. B.C. D.5.容量为100的样本数据,按从小到大的顺序分为8组,如下表:组号12345678频数1013141513129第3组的频数和频率分别是()A.和14 B.14和C.和24 D.24和6.已知定义域为的函数满足,且,若,则()A. B.C. D.7.函数的最小正周期是()A.π B.2πC.3π D.4π8.某食品的保鲜时间(单位:小时)与储存温度(单位:)满足函数关系(为自然对数的底数,为常数)若该食品在的保鲜时间是384小时,在的保鲜时间是24小时,则该食品在的保险时间是()小时A.6 B.12C.18 D.249.某地一年之内12个月的降水量从小到大分别为:46,48,51,53,53,56,56,56,58,64,66,71,则该地区的月降水量20%分位数和75%分位数为()A.51,58 B.51,61C.52,58 D.52,6110.若函数满足,且,,则A.1 B.3C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.一个几何体的三视图如图所示(单位:),则该几何体的体积为__________12.对于函数和,设,,若存在、,使得,则称与互为“零点关联函数”.若函数与互为“零点关联函数”,则实数的取值范围为()A. B. C. D.13.设函数,若函数满足对,都有,则实数的取值范围是_______.14.函数f(x)=log2(x2-5),则f(3)=______15.集合的子集个数为______16.将函数图象上所有点的横坐标压缩为原来的后,再将图象向左平移个单位长度,得到函数的图象,则的单调递增区间为____________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数f(x)的定义域为D,如果存在x0∈D,使得fx0=x0,则称x0为f(x)的一阶不动点;如果存在x0∈D(1)分别判断函数y=2x与(2)求fx=x(3)求fx18.用定义法证明函数在上单调递增19.已知线段的端点的坐标为,端点在圆上运动.(1)求线段中点的轨迹的方程;(2)若一光线从点射出,经轴反射后,与轨迹相切,求反射光线所在的直线方程.20.如图是函数的部分图像,是它与轴的两个不同交点,是之间的最高点且横坐标为,点是线段的中点.(1)求函数的解析式及上的单调增区间;(2)若时,函数的最小值为,求实数的值.21.已知函数,(1)试比较与的大小关系,并给出证明;(2)解方程:;(3)求函数,(是实数)的最小值
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】对于ACD,举例判断,对于B,分两种情况判断详解】对于A,若时,满足,而不满足,所以A错误,对于B,当时,则一定成立,当时,由,得,则,所以B正确,对于C,若时,满足,而不满足,所以C错误,对于D,若时,则满足,而不满足,所以D错误,故选:B2、C【解析】函数为复合函数,先求出函数的定义域为,因为外层函数为减函数,则求内层函数的减区间为,由题意知函数在区间上单调递增,则是的子集,列出关于的不等式组,即可得到答案.【详解】的定义域为,令,则函数为,外层函数单调递减,由复合函数的单调性为同增异减,要求函数的增区间,即求的减区间,当,单调递减,则在上单调递增,即是的子集,则.故选:C.3、D【解析】直接利用二倍角公式,转化求解即可【详解】解:,则cos2x=1﹣2sin2x=1﹣2故选D【点睛】本题考查二倍角的三角函数,考查计算能力4、B【解析】对于,,当时为减函数,故错误;对于,,当时为减函数,故错误;对于,在和上都是减函数,故错误;故选5、B【解析】根据样本容量和其它各组的频数,即可求得答案.【详解】由题意可得:第3组频数为,故第3组的频率为,故选:B6、A【解析】根据,,得到求解.【详解】因为,,所以,所以,所以,所以,,故选:A7、A【解析】化简得出,即可求出最小正周期.【详解】,最小正周期.故选:A.8、A【解析】先阅读题意,再结合指数运算即可得解.【详解】解:由题意有,,则,即,则,即该食品在的保险时间是6小时,故选A.【点睛】本题考查了指数幂的运算,重点考查了解决实际问题的能力,属基础题.9、B【解析】先把每月的降水量从小到大排列,再根据分位数的定义求解.【详解】把每月的降水量从小到大排列为:46,48,51,53,53,56,56,56,58,64,66,71,,所以该地区月降水量的分位数为;所以该地区的月降水量的分位数为.故选:B10、B【解析】因为函数满足,所以,结合,可得,故选B.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】几何体为一个圆锥与一个棱柱的组合体,体积为12、C【解析】先求得函数的零点为,进而可得的零点满足,由二次函数的图象与性质即可得解.【详解】由题意,函数单调递增,且,所以函数的零点为,设的零点为,则,则,由于必过点,故要使其零点在区间上,则或,即或,所以,故选:C.【点睛】关键点点睛:解决本题的关键是将题目条件转化为函数零点的范围,再由二次函数的图象与性质即可得解.13、【解析】首先根据题意可得出函数在上单调递增;然后根据分段函数单调性的判断方法,同时结合二次函数的单调性即可求出答案.【详解】因为函数满足对,都有,所以函数在上单调递增.当时,,此时满足在上单调递增,且;当时,,其对称轴为,当时,上单调递增,所以要满足题意,需,即;当时,在上单调递增,所以要满足题意,需,即;当时,单调递增,且满足,所以满足题意.综上知,实数的取值范围是.故答案为:.14、2【解析】利用对数性质及运算法则直接求解【详解】∵函数f(x)=log2(x2-5),∴f(3)=log2(9-5)=log24=2故答案为2【点睛】本题考查函数值的求法,考查函数性质等基础知识,考查运算求解能力,是基础题15、32【解析】由n个元素组成的集合,集合的子集个数为个.【详解】解:由题意得,则A的子集个数为故答案为:32.16、【解析】根据函数图象的变换,求出的解析式,结合函数的单调性进行求解即可.【详解】由数图象上所有点的横坐标压缩为原来的后,得到,再将图象向左平移个单位长度,得到函数的图象,即令,函数的单调递增区间是由,得,的单调递增区间为.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)y=2x不存在一阶不动点,(2)0,±1(3)3【解析】(1)根据一阶不动点的定义直接分别判断即可;(2)根据一阶不动点的定义直接计算;(3)根据分段函数写出ffx【小问1详解】设函数gx=2x-x,x∈R所以g'x=又g'0=所以∃x0∈0,1,时所以gx在-∞,所以gx≥x所以y=2设函数y=x存在一阶不动点,即存在x0∈0,+∞上,使x【小问2详解】由已知得fx0=x0所以fx=xx2-1【小问3详解】由fx当0<x≤1时,fx=e设Fx=2-ex2-x,x∈0,1,F'x=-ex2-1<0恒成立,所以Fx在0,1上单调递减,且F当1<x<4时,fx=2-x所以1<x<2时,fx=2-x2∈1,32,ffx=2-2-x当2≤x<4时,fx=2-x2∈0,1,ffx=e2-x2,设Gx=e2-x2-x,G'综上所述,fx的二阶周期点的个数为318、详见解析【解析】根据题意,将函数的解析式变形有,设,由作差法分析可得结论详解】证明:,设,则,又由,则,,,则,则函数上单调递增【点睛】本题考查函数单调性的证明,注意定义法证明函数单调性的步骤,属于基础题.19、(1)(2),【解析】(1)设,利用中点坐标公式,转化为的坐标,代入圆的方程求解即可(2)设关于轴对称点设过的直线,利用点到直线的距离公式化简求解即可【详解】设,则代入轨迹的方程为(2)设关于轴对称点设过的直线,即∵,,∴或∴反射光线所在即即20、(1)(2)【解析】(1)由点是线段的中点,可得和的坐标,从而得最值和周期,可得和,再代入顶点坐标可得,再利用整体换元可求单调区间;(2)令得到,讨论二次函数的对称轴与区间的位置关系求最值即可.【详解】(1)因为为中点,,所以,,则,,又因为,则所以,由又因为,则所以令又因为则单调递增区间为.(2)因为所以令,则对称轴为①当时,即时,;②当时,即时,(舍)③当时,即时,(舍)综上可得:.【点睛】本题主要考查了利用三角函数的图象求解三角函数的解析式及二次函数轴动区间定的最值问题,考查了学生的分类讨论思想及计算能力,属于中档题.21、(1)(2)或.(3)【解析】(1)与作差,配方后即可得;(2)原方程化为,设,可得,进而可得结果;(3)令,则,函数可化为,利用二次函数的性质分情况讨论,分别求出两段函数的最小值,比较大小后可得各种情况下函数,(是实数)的最小值.试题解析:(1)因为,所以(2)由,得,令,则,故原方程可化为,解得,或(舍去),则,即,解得或,所以或(3)令,则,函数可化为①若,当时,,对称轴,此时;当时,,对称轴,此时,故,②若,当,,对称轴,此时;当时,,对称轴,此时,故,③若,当时,,对称轴,此时;当时,,对称轴,此时,故,;④若,当时,,对称轴,此时;当时,,对称轴,此时,则时,,时,,故,⑤若,当时,,对称轴,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度黑河市市委书记进校园引才446人备考题库附答案
- 2026中国联通甘孜州分公司招聘笔试备考试题及答案解析
- 2025年齐齐哈尔市国有资本投资运营有限公司出资企业招聘工作人员5人(公共基础知识)综合能力测试题附答案
- 2026广东佛山市顺德区伦教周君令初级中学招聘临聘教师笔试参考题库及答案解析
- 2025广东河源市连平县工业园管理委员会招聘编外人员2人备考题库附答案
- 2025广东广州市荔湾区西村街道公益性岗位招聘1人备考题库附答案
- 2025广东河源连平县政务数据服务中心招聘就业见习人员2人(公共基础知识)综合能力测试题附答案
- 2026云南大理州剑川县文化和旅游局招聘2人笔试参考题库及答案解析
- 2026重庆两江鱼复智选假日酒店劳务派遣岗位(客房服务员、前台接待、总账会计)招聘1人笔试备考试题及答案解析
- 2026天津中医药大学第一批招聘58人(博士)笔试备考题库及答案解析
- 语文-吉林省2026届高三九校11月联合模拟考
- 2025年四川省高职单招模拟试题语数外全科及答案
- 2025年江苏事业单位教师招聘体育学科专业知识考试试卷含答案
- 模拟智能交通信号灯课件
- 合肥市轨道交通集团有限公司招聘笔试题库及答案2025
- 2.3《河流与湖泊》学案(第2课时)
- 工地临建合同(标准版)
- GB/T 46275-2025中餐评价规范
- 2025至2030供水产业行业项目调研及市场前景预测评估报告
- 2025年6月大学英语四级阅读试题及答案
- 神经内外科会诊转诊协作规范
评论
0/150
提交评论