辽宁省辽河油田第二中学2026届数学高二上期末联考模拟试题含解析_第1页
辽宁省辽河油田第二中学2026届数学高二上期末联考模拟试题含解析_第2页
辽宁省辽河油田第二中学2026届数学高二上期末联考模拟试题含解析_第3页
辽宁省辽河油田第二中学2026届数学高二上期末联考模拟试题含解析_第4页
辽宁省辽河油田第二中学2026届数学高二上期末联考模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

辽宁省辽河油田第二中学2026届数学高二上期末联考模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.抛掷两枚质地均匀的硬币,设事件“第一枚硬币正面朝上”,事件“第二枚硬币反面朝上”,则下列结论中正确的为()A.与互为对立事件 B.与互斥C与相等 D.2.已知圆与圆没有公共点,则实数a的取值范围为()A. B.C. D.3.若直线l与椭圆交于点A、B,线段的中点为,则直线l的方程为()A. B.C. D.4.已知命题,则为()A. B.C. D.5.若双曲线的离心率为3,则的最小值为()A. B.1C. D.26.若圆与直线相切,则()A.3 B.或3C. D.或7.记Sn为等差数列{an}的前n项和,给出下列4个条件:①a1=1;②a4=4;③S3=9;④S5=25,若只有一个条件不成立,则该条件为()A.① B.②C.③ D.④8.过点且垂直于直线的直线方程是()A. B.C. D.9.根据如下样本数据,得到回归直线方程,则x345678y4.02.5-0.50.5-2.0-3.0A. B.C. D.10.已知向量,则下列结论正确的是()A.B.C.D.11.已知函数,则的值为()A. B.C. D.12.复数,且z在复平面内对应的点在第二象限,则实数m的值可以为()A.2 B.C. D.0二、填空题:本题共4小题,每小题5分,共20分。13.某校组织了一场演讲比赛,五位评委对某位参赛选手的评分分别为9,x,8,y,9.已知这组数据的平均数为8.6,方差为0.24,则______14.光线从椭圆的一个焦点发出,被椭圆反射后会经过椭圆的另一个焦点;光线从双曲线的一个焦点发出,被双曲线反射后的反射光线等效于从另一个焦点射出.如图,一个光学装置由有公共焦点的椭圆与双曲线构成,现一光线从左焦点发出,依次经与反射,又回到了点,历时秒;若将装置中的去掉,此光线从点发出,经两次反射后又回到了点,历时秒;若,则与的离心率之比为________15.已知双曲线C:的两焦点分别为,,P为双曲线C上一点,若,则=___________.16.下列是某厂1~4月份用水量(单位:百吨)的一组数据,由其散点图可知,用水量与月份之间有较好的线性相关关系,其线性回归方程是,则_______.月份1234用水量4.5432.5三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图是一抛物线型机械模具的示意图,该模具是抛物线的一部分且以抛物线的轴为对称轴,已知顶点深度4cm,口径长为12cm(1)以顶点为坐标原点建立平面直角坐标系(如图),求该抛物线的标准方程;(2)为满足生产的要求,需将磨具的顶点深度减少1cm,求此时该磨具的口径长18.(12分)已知圆M:的圆心为M,圆N:的圆心为N,一动圆与圆N内切,与圆M外切,动圆的圆心E的轨迹为曲线C(1)求曲线C的方程;(2)已知点,直线l与曲线C交于A,B两点,且,直线l是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由19.(12分)某牧场今年初牛的存栏数为1200,预计以后每年存栏数的增长率为8%,且每年年底卖出100头牛,设牧场从今年起每年年初的计划存栏数依次为,,….(参考数据:,,.)(1)写出一个递推公式,表示与之间的关系;(2)将(1)中的递推关系表示成的形式,其中k,r为常数;(3)求的值(精确到1).20.(12分)如图,在四棱锥中,底面ABCD为矩形,侧面PAD是正三角形,平面平面ABCD,M是PD的中点(1)证明:平面PCD;(2)若PB与底面ABCD所成角的正切值为,求二面角的正弦值21.(12分)在平面直角坐标系中,设点,直线,点P在直线l上移动,R是线段PF与y轴的交点,也是PF的中点.,(1)求动点Q的轨迹的方程E;(2)过点F作两条互相垂直的曲线E的弦AB、CD,设AB、CD的中点分别为M,N.求直线MN过定点R的坐标22.(10分)某莲藕种植塘每年的固定成本是2万元,每年最大规模的种植量是8万千克,每种植1万千克莲藕,成本增加0.5万元.种植万千克莲藕的销售额(单位:万元)是(是常数),若种植2万千克莲藕,利润是1.5万元,求:(1)种植万千克莲藕利润(单位:万元)为的解析式;(2)要使利润最大,每年需种植多少万千克莲藕,并求出利润的最大值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】利用互斥事件和对立事件的定义分析判断即可【详解】因为抛掷两枚质地均匀的硬币包含第一枚硬币正面朝上第二枚硬币正面朝上,第一枚硬币正面朝上第二枚硬币反面朝上,第一枚硬币反面朝上第二枚硬币正面朝上,第一枚硬币反面朝上第二枚硬币反面朝上,4种情况,其中事件包含第一枚硬币正面朝上第二枚硬币正面朝上,第一枚硬币正面朝上第二枚硬币反面朝上2种情况,事件包含第一枚硬币正面朝上第二枚硬币反面朝上,第一枚硬币反面朝上第二枚硬币反面朝上2种情况,所以与不互斥,也不对立,也不相等,,所以ABC错误,D正确,故选:D2、B【解析】求出圆、的圆心和半径,再由两圆没有公共点列不等式求解作答.【详解】圆的圆心,半径,圆的圆心,半径,,因圆、没有公共点,则有或,即或,又,解得或,所以实数a的取值范围为.故选:B3、A【解析】用点差法即可获解【详解】设.则两式相减得即因为,线段AB的中点为,所以所以所以直线的方程为,即故选:A4、C【解析】将全称命题否定为特称命题即可【详解】由题意,根据全称命题与特称命题的关系,可得命题,则,故选:C.5、D【解析】由双曲线的离心率为3和,求得,化简,结合基本不等式,即可求解.【详解】由题意,双曲线的离心率为3,即,即,又由,可得,所以,当且仅当,即时,“”成立.故选:D【点睛】使用基本不等式解答问题的策略:1、利用基本不等式求最值时,要注意三点:一是各项为正;二是寻求定值;三是考虑等号成立的条件;2、若多次使用基本不等式时,容易忽视等号的条件的一致性,导致错解;3、巧用“拆”“拼”“凑”:在使用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中的“正、定、等”的条件.6、B【解析】根据圆与与直线相切,利用圆心到直线的距离等于半径求解.【详解】圆的标准方程为:,则圆心为,半径为,因为圆与与直线相切,所以圆心到直线的距离等于半径,即,解得或,故选:B7、B【解析】根据等差数列通项公式及求和公式的基本量计算,对比即可得出结果.【详解】设等差数列{an}的公差为,,,,即,即.当,时,①③④均成立,②不成立.故选:B8、A【解析】根据所求直线垂直于直线,设其方程为,然后将点代入求解.【详解】因为所求直线垂直于直线,所以设其方程为,又因为直线过点,所以,解得所以直线方程为:,故选:A.9、B【解析】作出散点图,由散点图得出回归直线中的的符号【详解】作出散点图如图所示.由图可知,回归直线=x+的斜率<0,当x=0时,=>0.故选B【点睛】本题考查了散点图的概念,拟合线性回归直线第一步画散点图,再由数据计算的值10、D【解析】由题可知:,,,故选;D11、C【解析】利用导数公式及运算法则求得,再求解【详解】因为,所以,所以故选:C12、B【解析】根据复数的几何意义求出的范围,即可得出答案.【详解】解:当z在复平面内对应的点在第二象限时,则有,可得,结合选项可知,B正确故选:B二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】根据平均数和方差的计算公式,求得,则问题得解.【详解】由题可知:整理得:;,整理得:,联立方程组得,解得或,对应或,故.故答案为:1.14、##0.75【解析】根据椭圆和双曲线定义用长半轴长和实半轴长表示出撤掉装置前后的路程,然后由已知可解.【详解】记椭圆的长半轴长为,双曲线的实半轴长为,由椭圆和双曲线的定义有:,得,即,又由椭圆定义知,,因为,所以,即所以.故答案为:15、18或2##2或18【解析】先由双曲线的方程求出,再利用双曲线的定义列方程求解即可【详解】由,得,则,因为双曲线C:的两焦点分别为,,P为双曲线C上一点,所以,即,所以或,因为,所以或都符合题意,故答案为:18或216、25【解析】根据表格数据求出,代入,即可求出.【详解】解:由题意知:,,将代入线性回归方程,即,解得:.故答案为:5.25.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)cm【解析】(1)设抛物线的标准方程为,由题意可得抛物线过点,将此点代入方程中可求出的值,从而可得抛物线方程,(2)设此时的口径长为,则抛物线过点,代入抛物线方程可求出的值,从而可求得答案【小问1详解】由题意,建立如图所示的平面直角坐标系,设抛物线的标准方程为,因为顶点深度4,口径长为12,所以该抛物线过点,所以,得,所以抛物线方程为;【小问2详解】若将磨具的顶点深度减少,设此时的口径长为,则可得,得,所以此时该磨具的口径长18、(1),;(2)过,.【解析】(1)根据两圆内切和外切的性质,结合双曲线的定义进行求解即可;(2)设出直线l的方程与双曲线的方程联立,利用一元二次方程根与系数关系,结合平面向量数量积的坐标表示公式进行求解判断即可.【小问1详解】设圆E的圆心为,半径为r,则,,所以由双曲线定义可知,E的轨迹是以M,N为焦点、实轴长为6的双曲线的右支,所以动圆的圆心E的轨迹方程为,;【小问2详解】设,,直线l的方程为由得,且,故又,所以又,,所以,即.又故或若,则直线l的方程为,过点,与题意矛盾,所以,故,所以直线l的方程为,过点【点睛】关键点睛:利用一元二次方程根与系数的关系是解题的关键.19、(1)(2)(3)10626【解析】(1)根据题意,建立递推关系即可;(2)利用待定系数法求解得.(3)利用等比数列求和公式,结合已知数据求解即可.【小问1详解】解:因为某牧场今年初牛的存栏数为1200,预计以后每年存栏数的增长率为8%,且每年年底卖出100头牛,所以,且.【小问2详解】解:将化成,因为所以比较的系数,可得,解得.所以(1)中的递推公式可以化为.【小问3详解】解:由(2)可知,数列是以为首项,1.08为公比的等比数列,则.所以.20、(1)证明见解析(2)【解析】(1)依题意可得,再根据面面垂直的性质得到平面,即可得到,即可得证;(2)取的中点为,连接,根据面面垂直的性质得到平面,连接,即可得到为与底面所成角,令,,利用锐角三角函数的定义求出,建立如图所示空间直角坐标系,利用空间向量法求出二面角的余弦值,即可得解;【小问1详解】解:证明:在正中,为的中点,∴∵平面平面,平面平面,且.∴平面,又∵平面∴.又∵,且,平面.∴平面【小问2详解】解:如图,取的中点为,连接,在正中,,平面平面,平面平面,∴平面,连接,则为与底面所成角,即.不妨取,,,,∴以为原点建立如图所示的空间直角坐标系,则有,,,,,,∴,设面的一个法向量为,则由令,则,又因为面,取作为面的一个法向量,设二面角为,∴,∴,因此二面角的正弦值为21、(1)(2)【解析】(1)由图中的几何关系可知,故可知动点Q的轨迹E是以F为焦点,l为准线的抛物线,但不能和原点重合,即可直接写出抛物线的方程;(2)设出直线AB的方程,把点、的坐标代入抛物线方程,两式作差后,再利用中点坐标公式求出点M的坐标,同理求出点的坐标,即可求出直线MN的方程,最后可求出直线MN过哪一定点.【小问1详解】∵直线的方程为,点R是线段FP的中点且,∴RQ是线段FP的垂直平分线,∵,∴是点Q到直线l的距离,∵点Q在线段FP的垂直平分线,∴,则动点Q的轨迹E是以F为焦点,l为准线的抛物线,但不能和原点重合,即动点Q轨迹的方程为.【小问2详解】设,,由题意直线AB斜率存在且不为0,设直线AB的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论