2026届北京市朝阳区市级名校数学高二上期末复习检测试题含解析_第1页
2026届北京市朝阳区市级名校数学高二上期末复习检测试题含解析_第2页
2026届北京市朝阳区市级名校数学高二上期末复习检测试题含解析_第3页
2026届北京市朝阳区市级名校数学高二上期末复习检测试题含解析_第4页
2026届北京市朝阳区市级名校数学高二上期末复习检测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届北京市朝阳区市级名校数学高二上期末复习检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.执行如图的程序框图,输出的S的值为()A. B.0C.1 D.22.已知椭圆的左焦点为,右顶点为,点在椭圆上,且轴,直线交轴于点.若,则椭圆的离心率是A. B.C. D.3.如图,P是椭圆第一象限上一点,A,B,C是椭圆与坐标轴的交点,O为坐标原点,过A作AN平行于直线BP交y轴于N,直线CP交x轴于M,直线BP交x轴于E.现有下列三个式子:①;②;③.其中为定值的所有编号是()A.①③ B.②③C.①② D.①②③4.已知双曲线的两个焦点,,是双曲线上一点,且,,则双曲线的标准方程是()A. B.C. D.5.在数列中,,则()A. B.C.2 D.16.已知数列满足,,.设,若对于,都有恒成立,则最大值为A.3 B.4C.7 D.97.如图,正四棱柱ABCD—A1B1C1D1中,AA1=2AB,则异面直线A1B与AD1所成角的余弦值为A. B.C. D.8.已知事件A,B相互独立,,则()A.0.24 B.0.8C.0.3 D.0.169.抛物线的准线方程是A.x=1 B.x=-1C. D.10.函数,若实数是函数的零点,且,则()A. B.C. D.无法确定11.若动圆的圆心在抛物线上,且恒过定点,则此动圆与直线()A.相交 B.相切C.相离 D.不确定12.雅言传承文明,经典浸润人生.某市举办“中华经典诵写讲大赛”,大赛分为四类:“诵读中国”经典诵读大赛、“诗教中国”诗词讲解大赛、“笔墨中国”汉字书写大赛、“印记中国”学生篆刻大赛.某人决定从这四类比赛中任选两类参赛,则“诵读中国”被选中的概率为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.4与16的等比中项是________.14.写出一个与椭圆有公共焦点的椭圆方程__________15.函数在处切线的斜率为_____16.直线的倾斜角的取值范围是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)的内角A,B,C的对边分别为a,b,c.已知.(1)求B(2)___________,若问题中的三角形存在,试求出;若问题中的三角形不存在,请说明理由.在①,②,③这三个条件中任选一个,补充在横线上.注:如果选择多个条件分别解答,按第一个解答计分.18.(12分)已知;对任意的恒成立.(1)若是真命题,求m的取值范围;(2)若是假命题,是真命题,求m的取值范围.19.(12分)已知三角形内角所对的边分别为,且C为钝角.(1)求cosA;(2)若,,求三角形的面积.20.(12分)已知函数.(1)若,求的极值;(2)若有两个零点,求实数a取值范围.21.(12分)已知椭圆:的左、右焦点分别为,,过点的直线l交椭圆于A,两点,的中点坐标为.(1)求直线l的方程;(2)求的面积.22.(10分)已知等比数列中,,数列满足,(1)求数列的通项公式;(2)求证:数列为等差数列,并求前项和的最大值

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】直接求出的值即可.【详解】解:由题得,程序框图就是求,由于三角函数的最小正周期为,,,所以.故选:A2、D【解析】由于BF⊥x轴,故,设,由得,选D.考点:椭圆的简单性质3、D【解析】根据斜率的公式,可以得到的值是定值,然后结合已知逐一判断即可.【详解】设,所以有,,因此,所以有,,,,,,故,,.故选:D【点睛】关键点睛:利用斜率公式得到之间的关系是解题的关键.4、D【解析】根据条件设,,由条件求得,即可求得双曲线方程.【详解】设,则由已知得,,又,,又,,双曲线的标准方程为.故选:D5、A【解析】利用条件可得数列为周期数列,再借助周期性计算得解.【详解】∵∴,,所以数列是以3为周期的周期数列,∴,故选:A.6、A【解析】整理数列的通项公式有:,结合可得数列是首项为,公比为的等比数列,则,,原问题即:恒成立,当时,,即>3,综上可得:的最大值为3.本题选择A选项点睛:数列的递推关系是给出数列的一种方法,根据给出的初始值和递推关系可以依次写出这个数列的各项,由递推关系求数列的通项公式,常用的方法有:①求出数列的前几项,再归纳猜想出数列的一个通项公式;②将已知递推关系式整理、变形,变成等差、等比数列,或用累加法、累乘法、迭代法求通项7、D【解析】设AA1=2AB=2,因为,所以异面直线A1B与AD1所成角,,故选D.8、B【解析】利用事件独立性的概率乘法公式及条件概率公式进行求解.【详解】因为事件A,B相互独立,所以,所以故选:B9、C【解析】先把抛物线方程整理成标准方程,进而求得p,再根据抛物线性质得出准线方程【详解】解:整理抛物线方程得,∴p=∵抛物线方程开口向上,∴准线方程是y=﹣故答案为C【点睛】本题主要考查抛物线的标准方程和简单性质.属基础题10、A【解析】利用函数在递减求解.【详解】因为函数在递减,又实数是函数的零点,即,又因为,所以,故选:A11、B【解析】根据题意得定点为抛物线的焦点,为准线,进而根据抛物线的定义判断即可.【详解】解:由题知,定点为抛物线的焦点,为准线,因为动圆的圆心在抛物线上,且恒过定点,所以根据抛物线的定义得动圆的圆心到直线的距离等于圆心到定点,即圆心到直线的距离等于动圆的半径,所以动圆与直线相切.故选:B12、B【解析】由已知条件得基本事件总数为种,符合条件的事件数为3中,由古典概型公式直接计算即可.【详解】从四类比赛中选两类参赛,共有种选择,其中“诵读中国”被选中的情况有3种,即“诵读中国”和“诗教中国”,“诵读中国”和“笔墨中国”,“诵读中国”和“印记中国”,由古典概型公式可得,故选:.二、填空题:本题共4小题,每小题5分,共20分。13、±8【解析】解析由G2=4×16=64得G=±8.答案±814、(答案不唯一)【解析】根据椭圆的标准方程,以及分析即可【详解】由题可知椭圆的形式应为(,且),可取故答案为:(答案不唯一)15、1【解析】求得函数的导数,计算得,即可得到切线的斜率【详解】由题意,函数,则,所以,即切线的斜率为1,故答案为:116、【解析】先求出直线的斜率取值范围,再根据斜率与倾斜角的关系,即可求出【详解】可化为:,所以,由于,结合函数在上的图象,可知故答案为:【点睛】本题主要考查斜率与倾斜角的关系的应用,以及直线的一般式化斜截式,属于基础题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)答案见解析【解析】(1)由正弦定理及正弦的两角和公式可求解;(2)选择条件①,由正弦定理及辅助角公式可求解;选择条件②,由余弦定理及正切三角函数可求解;选择条件③,由余弦定理可求解.【小问1详解】由,可得,则.∴,在中,,则,∵,∴,∴,∵,∴.【小问2详解】选择条件①,在中,,可得,∵,∴,∴,根据辅助角公式,可得,∵,∴,即,故选择条件②由,得,∵,∴,因此,,整理得,即,则.在中,,∴.故.选择条件③由,得,即,整理得,由于,则方程无解,故不存在这样的三角形.18、(1)(2)【解析】(1)为真命题,则都为真命题,求出为真命题时的m的取值范围,并求交集,即为结果;(2)若是假命题,是真命题,则一真一假,分两种情况进行求解,最后求并集即为结果.【小问1详解】由题意得:为真命题,则要满足,解得:,对任意的恒成立,结合开口向上,所以要满足:,解得:,要保证是真命题,则与取交集,结果为【小问2详解】是假命题,是真命题,则一真一假,结合(1)中所求,当真假时,与取交集,结果为;当假真时,与取交集,结果为,综上:m的取值范围是.19、(1)(2)【解析】(1)由正弦定理边化角,可求得角的正弦,由同角关系结合条件可得答案.(2)由(1),由余弦定理,求出边的长,进一步求得面积【小问1详解】因为,由正弦定理得因为,所以.因为角为钝角,所以角为锐角,所以小问2详解】由(1),由余弦定理,得,所以,解得或,不合题意舍去,故的面积为=20、(1)极小值为,无极大值(2)【解析】(1)利用导数求出,分别令、,进而得到函数的单调区间,即可求出极值;(2)利用导数讨论、0时函数的单调性,进而得出函数的最小值小于0,解不等式即可.【小问1详解】函数的定义域为,时,.令,解得,∵在上,,在上,,∴在上单调递减,在上单调递增,∴的极小值为,无极大值.【小问2详解】,当时,,∴在上单调递增,此时不可能有2个零点.当0时.令,得,∵在上,,在上,),∴在上单调递减,在上单调递增,∴的最小值为.∵有两个零点,∴,即,∴.经验证,若,则,且,又,∴有两个零点.综上,a的取值范围是.21、(1)(2)【解析】(1)设,根据AB的中点坐标可得,再利用点差法求得直线的斜率,即可求出直线方程;(2)易得直线过左焦点,联立直线和椭圆方程,消,利用韦达定理求得,再根据即可得出答案.【小问1详解】解:设,因为的中点坐标为,所以,则,两式相减得,即,即,所以直线l的斜率为1,所以直线l的方程为,即;【小问2详解】在直线中,当时,,由椭圆:,得,则直线过点,联立,消整理得,则,.22、(1);(2)证明见

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论