版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届陕西省安康市第二中学数学高二上期末达标检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若双曲线的离心率为3,则的最小值为()A. B.1C. D.22.在中,若,则()A.150° B.120°C.60° D.30°3.若a>b,c>d,则下列不等式中一定正确的是()A. B.C. D.4.如图,正三棱柱中,,则与平面所成角的正弦值等于()A. B.C. D.5.已知椭圆与双曲线有相同的焦点、,椭圆的离心率为,双曲线的离心率为,点P为椭圆与双曲线的交点,且,则当取最大值时的值为()A. B.C. D.6.已知正项等比数列的前项和为,且,则的最小值为()A. B.C. D.7.若连续抛掷两次骰子得到的点数分别为m,n,则点P(m,n)在直线x+y=4上的概率是()A. B.C. D.8.已知,则的最小值是()A.3 B.8C.12 D.209.如图,某圆锥的轴截面是等边三角形,点是底面圆周上的一点,且,点是的中点,则异面直线与所成角的余弦值是()A. B.C. D.10.己知命题;命题,则下列命题中为假命题的是()A. B.C. D.11.若方程表示双曲线,则的取值范围是()A.或 B.C.或 D.12.已知F是双曲线的右焦点,过F且垂直于x轴的直线交E于A,B两点,若E的渐近线上恰好存在四个点,,,,使得,则E的离心率的取值范围是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在△ABC中,角A,B,C所对的边分别为a,b,c,设△ABC的面积为S,其中,,则S的最大值为______14.在的展开式中项的系数为______.(结果用数值表示)15.已知抛物线的焦点为,点为抛物线上一点,以为圆心的圆经过原点,且与抛物线的准线相切,切点为,线段交抛物线于点,则___________.16.若关于的不等式恒成立,则实数的取值范围是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆()的离心率为,一个焦点为.(1)求椭圆的方程;(2)设为原点,直线()与椭圆交于不同的两点,且与x轴交于点,为线段的中点,点关于轴的对称点为.证明:是等腰直角三角形.18.(12分)已知点,椭圆:离心率为,是椭圆的右焦点,直线的斜率为,为坐标原点.设过点的动直线与相交于,两点(1)求椭圆的方程(2)是否存在直线,使得的面积为?若存在,求出的方程;若不存在,请说明理由19.(12分)已知数列的前项和为,且.(1)求的通项公式;(2)求数列的前项和.20.(12分)已知直线,,分别求实数的值,使得:(1);(2);(3)与相交.21.(12分)已知圆:,,为圆上的动点,若线段的垂直平分线交于点.(1)求动点的轨迹的方程;(2)已知为上一点,过作斜率互为相反数且不为0的两条直线,分别交曲线于,,求的取值范围.22.(10分)已知椭圆的离心率为,且经过点.(1)求椭圆的方程;(2)经过点的直线与椭圆交于不同的两点,,为坐标原点,若的面积为,求直线的方程.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由双曲线的离心率为3和,求得,化简,结合基本不等式,即可求解.【详解】由题意,双曲线的离心率为3,即,即,又由,可得,所以,当且仅当,即时,“”成立.故选:D【点睛】使用基本不等式解答问题的策略:1、利用基本不等式求最值时,要注意三点:一是各项为正;二是寻求定值;三是考虑等号成立的条件;2、若多次使用基本不等式时,容易忽视等号的条件的一致性,导致错解;3、巧用“拆”“拼”“凑”:在使用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中的“正、定、等”的条件.2、C【解析】根据正弦定理将化为边之间的关系,再结合余弦定理可得答案.【详解】若,则根据正弦定理得:,即,而,故,故选:C.3、B【解析】根据不等式的性质及反例判断各个选项.【详解】因为c>d,所以,所以,所以B正确;时,不满足选项A;时,,且,所以不满足选项CD;故选:B4、C【解析】取中点,连接,,证明平面,从而可得为与平面所成角,再利用三角函数计算的正弦值.【详解】取中点,连接,,在正三棱柱中,底面是正三角形,∴,又∵底面,∴,又,∴平面,∴为与平面所成角,由题意,,,在中,.故选:C5、D【解析】由椭圆的定义及双曲线的定义结合余弦定理可得,,的关系,由此可得,再利用重要不等式求最值,并求此时的的值.【详解】设为第一象限的交点,、,则、,解得、,在中,由余弦定理得:,∴,∴,∴,∴,∴,,即,当且仅当,即,时等号成立,此时故选:D6、B【解析】设等比数列的公比为,则,由可得,可得出,利用基本不等式可求得结果.【详解】设等比数列的公比为,则,因为,则,所以,,则,当且仅当时,等号成立.故选:B.7、D【解析】利用分布计数原理求出所有的基本事件个数,在求出点落在直线x+y=4上包含的基本事件个数,利用古典概型的概率个数求出.解:连续抛掷两次骰子出现的结果共有6×6=36,其中每个结果出现的机会都是等可能的,点P(m,n)在直线x+y=4上包含的结果有(1,3),(2,2),(3,1)共三个,所以点P(m,n)在直线x+y=4上的概率是3:36=1:12,故选D考点:古典概型点评:本题考查先判断出各个结果是等可能事件,再利用古典概型的概率公式求概率,属于基础题8、A【解析】利用基本不等式进行求解即可.【详解】因为,所以,当且仅当时取等号,即当时取等号,故选:A9、C【解析】建立空间直角坐标系,分别得到,然后根据空间向量夹角公式计算即可.【详解】以过点且垂直于平面的直线为轴,直线,分别为轴,轴,建立如图所示的空间直角坐标系.不妨设,则根据题意可得,,,,所以,,设异面直线与所成角为,则.故选:C.10、A【解析】根据或且非命题的真假进行判断即可.【详解】当,故命题是真命题,,故命题是真命题.因此可知是假命题,是真命题,,均为真命题.故选:A11、A【解析】由和的分母异号可得【详解】由题意,解得或故选:A12、D【解析】由题意以AB为直径的圆M与双曲线E的渐近线有四个不同的交点,则必有,又当圆M经过原点时此时以AB为直径的圆M上与双曲线E的渐近线有三个不同的交点,不满足,从而得出答案.【详解】由题意,由得,双曲线的渐近线方程为所以,由,可知,,,在以AB为直径的圆M上,圆的半径为即以AB为直径的圆M与双曲线E的渐近线有四个不同的交点当圆M与渐近线相切时,圆心到渐近线的距离,则必有,即,则双曲线E的离心率,所以又当圆M经过原点时,,解得E的离心率为,此时以AB为直径圆M与双曲线E的渐近线有三个不同的交点,不满足条件.所以E的离心率的取值范围是.故选:D二、填空题:本题共4小题,每小题5分,共20分。13、【解析】应用余弦定理有,再由三角形内角性质及同角三角函数平方关系求,根据基本不等式求得,注意等号成立条件,最后利用三角形面积公式求S的最大值.【详解】由余弦定理知:,而,所以,而,即,当且仅当时等号成立,又,当且仅当时等号成立.故答案为:14、【解析】先求解出该二项式展开式的通项,然后求解出满足题意的项数值,带入通项即可求解出展开式的系数.【详解】展开式通项为,由题意,令,解得,,所以项的系数为.故答案为:.15、【解析】分析可知为等腰三角形,可得出,将点的坐标代入抛物线的方程,可求得的值,可得出抛物线的方程以及点的坐标,求出点的坐标,设点,其中,分析可知,利用平面向量共线的坐标表示求出的值,进而可求得结果.【详解】由抛物线的定义结合已知条件可知,则为等腰三角形,易知抛物线的焦点为,故,即点,因为点在抛物线上,则,解得,所以,抛物线的方程为,故点、,因为以点为圆心,为半径的圆与直线相切于点,则,设点,其中,,,由题意可知,则,整理可得,解得,因此,.故答案为:.16、【解析】设由题可知,当时,可得适合题意,当时,可求函数的最小值即得,当时不合题意,即得.【详解】设,由题可知,∴,当时,,适合题意,所以,当时,令,则,此时时,,单调递减,,,单调递增,∴,又,∴,∴,即,解得,当时,时,,,故的值有正有负,不合题意;综上,实数的取值范围是.故答案为:.【点睛】关键点点睛:本题考查不等式恒成立求参数的取值范围,设由题可知,当时,利用导数可求函数的最小值,结合,可得,进而通过解,即得.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)证明见解析.【解析】(1)由题知,进而结合求解即可得答案;(2)设点,,进而联立并结合题意得或,进而结合韦达定理得,再的中点为,证明,进而得,,故,综合即可得证明.【小问1详解】解:因为椭圆的离心率为,一个焦点为所以,所以所以椭圆的方程为.【小问2详解】解:设点,则点,所以联立方程得,所以有,解得,因为,故或设,所以设向量,所以,所以,即,设的中点为,则所以,又因为,所以,所以,因为点关于轴的对称点为.所以,所以,所以是等腰直角三角形.18、(1);(2)存在;或.【解析】(1)设,由,,,求得的值即可得椭圆的方程;(2)设,,直线的方程为与椭圆方程联立可得,,进而可得弦长,求出点到直线的距离,解方程,求得的值即可求解.【小问1详解】设,因为直线的斜率为,,所以,可得,又因为,所以,所以,所以椭圆的方程为【小问2详解】假设存在直线,使得的面积为,当轴时,不合题意,设,,直线的方程为,联立消去得:,由可得或,,,所以,点到直线的距离,所以,整理可得:即,所以或,所以或,所以存在直线:或使得的面积为.19、(1);(2).【解析】(1)利用,结合已知条件,即可容易求得通项公式;(2)根据(1)中所求,对数列进行裂项求和,即可求得.【小问1详解】当时,.当时,,因为当时,,所以.【小问2详解】因为,所以,故数列的前项和.20、(1)或(2)或(3)且【解析】(1)根据直线一般式平行的条件列式计算;(2)根据直线一般式垂直的条件列式计算;(3)根据相交和平行的关系可得答案.【小问1详解】,,解得或又时,直线,,两直线不重合;时,直线,,两直线不重合;故或;【小问2详解】,,解得或;【小问3详解】与相交故由(1)得且.21、(1)动点的轨迹的方程为;(2)的取值范围.【解析】(1)由条件线段的垂直平分线交于点可得,由此可得,根据椭圆的定义可得点的轨迹为椭圆,结合椭圆的标准方程求动点的轨迹的方程;(2)由(1)可求点坐标,设直线的方程为,,联立方程组化简可得,,由直线,的斜率互为相反数可得的值,再由弦长公式求的长,再求其范围.【小问1详解】由题知故.即即在以为焦点且长轴为4的椭圆上则动点的轨迹的方程为:;【小问2详解】故即.设:,联立(*),,∴,,又则:即若,则过,不符合题意故,∴,故22、(1);(2)或.【解析】(1)由离心率公式、将点代入椭圆方程得出椭圆的方程;(2)联立椭圆和直线的方程,由判别式得出
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年高职酒店管理(宴会策划执行)试题及答案
- 2025年高职(物联网应用技术)工业物联网实务试题及答案
- 2025年高职商务管理(商务谈判)试题及答案
- 2026年广告策划(文案优化)试题及答案
- 2026年手臂按摩仪项目评估报告
- 2025年中职(油脂工程技术)油脂制取综合测试题及答案
- 2025年中职小学教育(小学生安全教育)试题及答案
- 2025年高职物联网(物联网终端调试)试题及答案
- 2025年大学大三(智能电网信息工程)电力系统自动化技术试题及答案
- 2025年中职电气(电气控制基础)试题及答案
- LYT 2085-2013 森林火灾损失评估技术规范
- 材料样品确认单
- 彝族文化和幼儿园课程结合的研究获奖科研报告
- 空调安装免责协议
- 《传感器与检测技术》试题及答案
- 湖北省襄樊市樊城区2023-2024学年数学四年级第一学期期末质量检测试题含答案
- 初中班会主题课件科学的复习事半功倍(共23张PPT)
- PCB封装设计规范
- GB/T 9349-2002聚氯乙烯、相关含氯均聚物和共聚物及其共混物热稳定性的测定变色法
- GB/T 32473-2016凝结水精处理用离子交换树脂
- 《水利水电工程等级划分及洪水标准》 SL252-2000
评论
0/150
提交评论