江苏省南大附中2026届高一数学第一学期期末检测模拟试题含解析_第1页
江苏省南大附中2026届高一数学第一学期期末检测模拟试题含解析_第2页
江苏省南大附中2026届高一数学第一学期期末检测模拟试题含解析_第3页
江苏省南大附中2026届高一数学第一学期期末检测模拟试题含解析_第4页
江苏省南大附中2026届高一数学第一学期期末检测模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省南大附中2026届高一数学第一学期期末检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列四组函数中,表示相同函数的一组是()A.,B.,C.,D.,2.如图,某池塘里浮萍的面积(单位:)与时间t(单位:月)的关系为,关于下列说法不正确的是()A.浮萍每月的增长率为2B.浮萍每月增加的面积都相等C.第4个月时,浮萍面积超过D.若浮萍蔓延到所经过的时间分别是,、,则3.设全集,集合,则()A.{3,5} B.{2,4}C.{1,2,3,4,5} D.{2,3,4,5,6}4.为了得到函数的图象,可以将函数的图象A.向右平移 B.向右平移C.向左平移 D.向左平移5.满足的角的集合为()A. B.C. D.6.已知函数是定义在上的奇函数,,且,则()A. B.C. D.7.若,,则下列结论正确的是()A. B.C. D.8.已知,则的值为()A B.1C. D.9.已知α,β是两个不同的平面,m,n是两条不同的直线,给出下列命题:①若m∥α,m∥β,则α∥β②若m⊂α,n⊂α,m∥β,n∥β,则α∥β;③m⊂α,n⊂β,m、n是异面直线,那么n与α相交;④若α∩β=m,n∥m,且n⊄α,n⊄β,则n∥α且n∥β其中正确的命题是()A.①② B.②③C.③④ D.④10.下列函数中,既是奇函数,又在区间上单调递增的是()A. B.C D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,,向量与的夹角为,则________12.已知函数,的值域为,则实数的取值范围为__________.13.函数在上存在零点,则实数a的取值范围是______14.已知圆锥的侧面展开图是一个半径为,圆心角为的扇形,则此圆锥的高为________.15.已知在上单调递增,则的范围是_____16.已知,且.(1)求的值;(2)求的值.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)判断奇偶性;(2)当时,判断的单调性并证明;(3)在(2)的条件下,若实数满足,求的取值范围.18.已知全集,若集合,.(1)若,求;(2)若,求实数的取值范围.19.已知函数(且)(1)当时,解不等式;(2)是否存在实数a,使得当时,函数的值域为?若存在,求实数a的值;若不存在,请说明理由20.汽车智能辅助驾驶已开始得到应用,其自动刹车的工作原理是用雷达测出车辆与前方障碍物之间的距离(并集合车速转化为所需时间),当此距离等于报警距离时就开始报警提醒,等于危险距离时就自动刹车.若将报警时间划分为4段,分别为准备时间、人的反应时间、系统反应时间、制动时间,相应的距离分别为,,,,如下图所示.当车速为(米/秒),且时,通过大数据统计分析得到下表给出的数据(其中系数随地面湿滑程度等路面情况而变化,)阶段0.准备1.人的反应2.系统反应3.制动时间秒秒距离米米(1)请写出报警距离(米)与车速(米/秒)之间的函数关系式;并求当,在汽车达到报警距离时,若人和系统均未采取任何制动措施,仍以此速度行驶的情况下,汽车撞上固定障碍物的最短时间(精确到0.1秒);(2)若要求汽车不论在何种路面情况下行驶,报警距离均小于50米,则汽车的行驶速度应限制在多少千米/小时?21.已知角的顶点与原点重合,角的始边与轴的非负半轴重合,并满足:,且有意义.(1)试判断角的终边在第几象限;(2)若角的终边上一点,且为坐标原点),求的值及的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】根据相同函数的判断原则进行定义域的判断即可选出答案.【详解】解:由题意得:对于选项A:的定义域为,的定义域为,所以这两个函数的定义域不同,不表示相同的函数,故A错误;对于选项B:的定义域为,的定义域为,所以这两个函数的定义域不同,不表示相同的函数,故B错误;对于选项C:的定义域为,的定义域为,这两函数的定义域相同,且对应关系也相同,所以表示相同的函数,故C正确;对于选项D:的定义域为,的定义域为或,所以这两个函数的定义域不同,不表示相同的函数,故D错误.故选:C2、B【解析】先利用特殊点求出函数解析式为,再利用指数函数的性质即可判断出正误【详解】解:图象可知,函数过点,,函数解析式为,浮萍每月的增长率为,故选项A正确,函数是指数函数,是曲线型函数,浮萍每月增加的面积不相等,故选项B错误,当时,,故选项C正确,对于D选项,,,,,又,,故选项D正确,故选:B3、D【解析】先求补集,再求并集.详解】,则.故选:D4、B【解析】先将,进而由平移变换规律可得解.【详解】函数,所以只需将向右平移可得.故选B.【点睛】本题主要考查了三角函数的图像平移变换,解题的关键是将函数名统一,需要利用诱导公式,属于中档题.5、D【解析】利用正弦函数的图像性质即可求解.【详解】.故选:D.6、C【解析】由得函数的周期性,由周期性变形自变量的值,最后由奇函数性质求得值【详解】∵是奇函数,∴,又,∴是周期函数,周期为4∴故选:C7、C【解析】根据不等式的性质,逐一分析选项,即可得答案.【详解】对于A:因为,所以,因为,所以,故A错误;对于B:因为,所以,且,所以,故B错误;对于C:因为,所以,又,所以,故C正确;对于D:因为,,所以,所以,故D错误.故选:C8、A【解析】知切求弦,利用商的关系,即可得解.【详解】,故选:A9、D【解析】利用平面与平面垂直和平行的判定和性质,直线与平面平行的判断,对选项逐一判断即可【详解】①若m∥α,m∥β,则α∥β或α与β相交,错误命题;②若m⊂α,n⊂α,m∥β,n∥β,则α∥β或α与β相交.错误的命题;③m⊂α,n⊂β,m、n是异面直线,那么n与α相交,也可能n∥α,是错误命题;④若α∩β=m,n∥m,且n⊄α,n⊄β,则n∥α且n∥β.是正确的命题故选D【点睛】本题考查平面与平面的位置关系,直线与平面的位置关系,考查空间想象力,属于中档题.10、你二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】由于.考点:平面向量数量积;12、##【解析】由题意,可令,将原函数变为二次函数,通过配方,得到对称轴,再根据函数的定义域和值域确定实数需要满足的关系,列式即可求解.【详解】设,则,∵,∴必须取到,∴,又时,,,∴,∴.故答案为:13、【解析】由可得,求出在上的值域,则实数a的取值范围可求【详解】由,得,即由,得,又∵函数在上存在零点,即实数a的取值范围是故答案为【点睛】本题考查函数零点的判定,考查函数值域的求法,是基础题14、【解析】设此圆的底面半径为,高为,母线为,根据底面圆周长等于展开扇形的弧长,建立关系式解出,再根据勾股定理得,即得此圆锥高的值【详解】设此圆的底面半径为,高为,母线为,因为圆锥的侧面展开图是一个半径为,圆心角为的扇形,所以,得,解之得,因此,此圆锥的高,故答案为:【点睛】本题给出圆锥的侧面展开图扇形的半径和圆心角,求圆锥高的大小,着重考查了圆锥的定义与性质和旋转体侧面展开等知识,属于基础题.15、【解析】令,利用复合函数的单调性分论讨论函数的单调性,列出关于的不等式组,求解即可.【详解】令当时,由题意知在上单调递增且对任意的恒成立,则,无解;当时,由题意知在上单调递减且对任意的恒成立,则,解得.故答案为:【点睛】本题考查对数型复合函数的单调性,同增异减,求解时注意对数函数的定义域,属于基础题.16、(1)(2)【解析】(1)根据,之间的关系,平方后求值即可;(2)利用诱导公式化简后,再根据同角三角函数间关系求解.【小问1详解】∵∴,.【小问2详解】由,可得或(舍),原式,∴原式.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)奇函数(2)增函数,证明见解析(3)【解析】(1)求出函数的定义域,再判断的关系,即可得出结论;(2)任取且,利用作差法比较的大小即可得出结论;(3)根据函数的单调性列出不等式,即可得解,注意函数的定义域.【小问1详解】解:函数的定义域为,因为,所以函数是奇函数;小问2详解】解:函数是上单调增函数,证:任取且,则,因为,所以,,,所以,即,所以函数是上的单调增函数;【小问3详解】解:由(2)知函数是上的单调增函数,所以,解得,所以的取值范围为.18、(1)(2)【解析】(1)利用集合的交集及补集的定义直接求解即可;(2)由可得,利用集合的包含关系求解即可.【详解】(1)当时,,所以,因为,所以;(2)由得,,所以【点睛】本题主要考查了集合的运算及包含关系求参,属于基础题.19、(1);(2)不存在.【解析】(1)根据对数函数的性质可得,求解集即可.(2)由题设可得,进而将问题转化为在上有两个不同的零点,利用二次函数的性质即可判断存在性.【小问1详解】由题设,,∴,可得,∴的解集为.【小问2详解】由题设,,故,∴,而上递增,递减,∴在上递减,故,∴,即是的两个不同的实根,∴在上有两个不同的零点,而开口向上且,显然在上不可能存在两个零点,综上,不存在实数a使题设条件成立.【点睛】关键点点睛:第二问,根据对数函数的性质易得,并将问题转化为二次函数在上有两个不同实根零点判断参数的存在性.20、(1);2.4秒;(2)72(千米/小时)【解析】(1)由图,分别计算出报警时间、人的反应时间、系统反应时间、制动时间,相应的距离,,,,代入中即可,,利用基本不等式求最值;(2)将问题转化为对于任意,恒成立,利用分离参数求范围即可.【详解】(1)由题意得,所以当时,,(秒)即此种情况下汽车撞上固定障碍物的最短时间约为2.4秒(2)根据题意要求对于

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论