版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省日照市第一中学2026届高一数学第一学期期末经典试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知两个不重合的平面α,β和两条不同直线m,n,则下列说法正确的是A.若m⊥n,n⊥α,m⊂β,则α⊥βB.若α∥β,n⊥α,m⊥β,则m∥nC.若m⊥n,n⊂α,m⊂β,则α⊥βD.若α∥β,n⊂α,m∥β,则m∥n2.向量,若,则k的值是()A.1 B.C.4 D.3.正方形的边长为,它是水平放置的一个平面图形的直观图,则原图形的周长是()A. B.C. D.4.为了预防信息泄露,保证信息的安全传输,在传输过程中都需要对文件加密,有一种加密密钥密码系统,其加密、解密原理为:发送方由明文→密文(加密),接收方由密文→明文.现在加密密钥为,如“4”通过加密后得到密文“2”,若接受方接到密文“”,则解密后得到的明文是()A. B.C.2 D.5.已知,则a,b,c的大小关系是()A. B.C. D.6.已知为三角形内角,且,若,则关于的形状的判断,正确的是A.直角三角形 B.锐角三角形C.钝角三角形 D.三种形状都有可能7.已知函数是定义在R上的偶函数,且在区间单调递增.若实数a满足,则a的取值范围是A. B.C. D.8.已知集合,,则A. B.C. D.9.设,,则()A. B.C. D.10.若圆上有且只有两个点到直线的距离等于1,则半径r的取值范围是A.(4,6) B.[4,6]C.(4,5) D.(4,5]二、填空题:本大题共6小题,每小题5分,共30分。11.已知是锐角,且sin=,sin=_________.12.已知圆锥的侧面展开图是一个半径为2的半圆,则这个圆锥的高是_______13.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,他和阿基米德、牛顿并列为世界三大数学家.用其名字命名的“高斯函数”为:,表示不超过x的最大整数,如,,[2]=2,则关于x的不等式的解集为__________.14.已知,函数在上单调递增,则的取值范围是__15.已知,,则__________16.在正方体中,直线与平面所成角的正弦值为________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,且.(1)求的值;(2)求的值.18.已知函数,当时,取得最小值(1)求a的值;(2)若函数有4个零点,求t的取值范围19.已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P()(Ⅰ)求sin(α+π)的值;(Ⅱ)若角β满足sin(α+β)=,求cosβ的值20.已知函数,且.(1)求的解析式,判断并证明它的奇偶性;(2)求证:函数在上单调减函数.21.已知函数(Ⅰ)当时,求在区间上的值域;(Ⅱ)当时,是否存在这样的实数a,使方程在区间内有且只有一个根?若存在,求出a的取值范围;若不存在,请说明理由
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】由题意得,A中,若,则或,又,∴不成立,∴A是错误的;B.若,则,又,∴成立,∴B正确;C.当时,也满足若,∴C错误;D.若,则或为异面直线,∴D错误,故选B考点:空间线面平行垂直的判定与性质.【方法点晴】本题主要考查了空间线面位置关系的判定与证明,其中熟记空间线面位置中平行与垂直的判定定理与性质定理是解得此类问题的关键,着重考查了学生的空间想象能和推理能力,属于基础题,本题的解答中,可利用线面位置关系的判定定理和性质定理判定,也可利用举出反例的方式,判定命题的真假.2、B【解析】首先算出的坐标,然后根据建立方程求解即可.【详解】因为所以,因为,所以,所以故选:B3、B【解析】根据斜二测画法画直观图的性质,即平行于轴的线段长度不变,平行于轴的线段的长度减半,结合图形求得原图形的各边长,可得周长【详解】因为直观图正方形的边长为1cm,所以,所以原图形为平行四边形OABC,其中,,,所以原图形的周长4、A【解析】根据题意中给出的解密密钥为,利用其加密、解密原理,求出的值,解方程即可求解.【详解】由题可知加密密钥为,由已知可得,当时,,所以,解得,故,显然令,即,解得,即故选:A.5、B【解析】根据指数函数的单调性、对数函数的单调性可得答案.【详解】根据指数函数的单调性可知,,即,即c>1,由对数函数的单调性可知,即.所以c>a>b故选:B6、C【解析】利用同角平方关系可得,,结合可得,从而可得的取值范围,进而可判断三角形的形状【详解】解:,,为三角形内角,,为钝角,即三角形为钝角三角形故选C【点睛】本题主要考查了利用同角平方关系的应用,其关键是变形之后从的符号中判断的取值范围,属于三角函数基本技巧的运用7、C【解析】函数是定义在上的偶函数,∴,等价为),即.∵函数是定义在上的偶函数,且在区间单调递增,∴)等价为.即,∴,解得,故选项为C考点:(1)函数的奇偶性与单调性;(2)对数不等式.【思路点晴】本题主要考查对数的基本运算以及函数奇偶性和单调性的应用,综合考查函数性质的综合应用根据函数的奇偶数和单调性之间的关系,综合性较强.由偶函数结合对数的运算法则得:,即,结合单调性得:将不等式进行等价转化即可得到结论.8、A【解析】由得,所以;由得,所以.所以.选A9、D【解析】解出不等式,然后可得答案.【详解】因为,所以故选:D10、A【解析】由圆,可得圆心的坐标为圆心到直线的距离为:由得所以的取值范围是故答案选点睛:本题的关键是理解“圆上有且只有两个点到直线的距离等于1”,将其转化为点到直线的距离,结合题意计算求得结果二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由诱导公式可求解.【详解】由,而.故答案为:12、【解析】设圆锥的母线为,底面半径为则因此圆锥的高是考点:圆锥的侧面展开图13、【解析】解一元二次不等式,结合新定义即可得到结果.【详解】∵,∴,∴,故答案为:14、【解析】本题已知函数的单调区间,求参数的取值范围,难度中等.由,得,又函数在上单调递增,所以,即,注意到,即,所以取,得考点:函数的图象与性质【方法点晴】已知函数为单调递增函数,可得变量的取值范围,其必包含区间,从而可得参数的取值范围,本题还需挖掘参数的隐含范围,即函数在上单调递增,可知,因此,综合题15、【解析】构造角,,再用两角和的余弦公式及二倍公式打开.【详解】,,,,,故答案为:【点睛】本题是给值求值题,关键是构造角,应注意的是确定三角函数值的符号.16、【解析】连接AC交BD于O点,设交面于点E,连接OE,则角CEO就是所求的线面角,因为AC垂直于BD,AC垂直于,故AC垂直于面.设正方体的边长为2,则OC=,OE=1,CE,此时正弦值为故答案为.点睛:求线面角,一是可以利用等体积计算出直线的端点到面的距离,除以线段长度就是线面角的正弦值;高二时还会学到空间向量法,可以建系,用空间向量的方法求直线的方向向量和面的法向量,再求线面角即可.面面角一般是要么定义法,做出二面角,或者三垂线法做出二面角,利用几何关系求出二面角,要么建系来做.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)利用同角三角函数的基本关系可求得的值;(2)利用诱导公式以及弦化切可求得结果.【小问1详解】解:因为,且,则为第三象限角,故,因此,.【小问2详解】解:原式.18、(1)4(2)【解析】(1)分类讨论和两种情况,由其单调性得出a的值;(2)令,结合一元二次方程根的分布得出t的取值范围【小问1详解】解:当时,,则,故没有最小值当时,由,得,则在上单调递减,在上单调递增,故,即【小问2详解】的图象如图所示令,则函数在上有2个零点,得解得,故t的取值范围为19、(Ⅰ);(Ⅱ)或.【解析】分析:(Ⅰ)先根据三角函数定义得,再根据诱导公式得结果,(Ⅱ)先根据三角函数定义得,再根据同角三角函数关系得,最后根据,利用两角差的余弦公式求结果.【详解】详解:(Ⅰ)由角的终边过点得,所以.(Ⅱ)由角的终边过点得,由得.由得,所以或.点睛:三角函数求值的两种类型(1)给角求值:关键是正确选用公式,以便把非特殊角的三角函数转化为特殊角的三角函数.(2)给值求值:关键是找出已知式与待求式之间的联系及函数的差异.①一般可以适当变换已知式,求得另外函数式的值,以备应用;②变换待求式,便于将已知式求得的函数值代入,从而达到解题的目的.20、(1),是奇函数(2)证明见解析【解析】(1)将代入,求得,再由函数奇偶性的定义判断即可;(2)利用函数单调性的定义证明即可.【详解】解:(1)∴∴,∴是奇函数(2)设,∵,,,∴,∴在上是单调减函数.【点睛】本题考查函数解析式的求法,奇偶性的证法、单调性的证明,属于中档题.21、(Ⅰ);(Ⅱ)存在,.【解析】(Ⅰ)先把代入解析式,再求对称轴,进而得到函数的单调性,即可求出值域;(Ⅱ)函数在区间内有且只有一个零点,转化为函数和的图象在内有唯一交点,根据中是否为零,分类讨论,结合函数的性质,即可求解.【详解】(Ⅰ)当时,,对称轴为:,所以函数在区间单调递减,在区间单调递增;则,所以在区间上的值域为;(Ⅱ)由,令,可得,即,令,,,函数在区间内有且只有一个零点,等价于两个函数与的图象在内有唯一交点;①当时,在上递减,在上递增,而,所以函数与的图象在内有唯一交点.②当时,图象开口向下,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年康复治疗(物理因子治疗)试题及答案
- 多组学指导个体化化疗药物选择策略
- 2026年客服管理(客户档案管理)试题及答案
- 2025年大学逻辑学(逻辑推理)试题及答案
- 2025年高职地理学(地理教育心理学案例分析)试题及答案
- 2026年市政供水管网改造项目可行性研究报告
- 多源异构数据在职业病趋势预测中的融合方法
- 2025年中职休闲体育(休闲理论)试题及答案
- 2025年大学大四(自动化)工业机器人技术综合测试试题及答案
- 2025年高职播音与主持艺术(播音技巧提升)试题及答案
- 工商调解协议书(2篇)
- (TCSEB 0011-2020)《露天爆破工程技术设计规范》
- 北京市朝阳区2023-2024学年五年级上学期语文期末试卷(含答案)
- 医疗器械设计和开发的培训
- 沪教版八年级化学(上册)期末阶段检测及答案
- DL-T797-2012风力发电场检修规程
- ISO27001:2022信息安全管理手册+全套程序文件+表单
- 2024年国网信息专业三种人考试复习题库(附答案)
- 导尿技术常见并发症及处理
- 23秋国家开放大学《汉语基础》期末大作业(课程论文)参考答案
- 电弧炉炼钢工安全操作规程
评论
0/150
提交评论