2026届广西贺州平桂高级中学数学高二上期末调研试题含解析_第1页
2026届广西贺州平桂高级中学数学高二上期末调研试题含解析_第2页
2026届广西贺州平桂高级中学数学高二上期末调研试题含解析_第3页
2026届广西贺州平桂高级中学数学高二上期末调研试题含解析_第4页
2026届广西贺州平桂高级中学数学高二上期末调研试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届广西贺州平桂高级中学数学高二上期末调研试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,四棱锥中,底面是边长为的正方形,平面,为底面内的一动点,若,则动点的轨迹在()A.圆上 B.双曲线上C.抛物线上 D.椭圆上2.甲乙两个雷达独立工作,它们发现飞行目标的概率分别是0.9和0.8,飞行目标被雷达发现的概率为()A.0.72 B.0.26C.0.7 D.0.983.经过点的直线的倾斜角为,则A. B.C. D.4.一部影片在4个单位轮流放映,每个单位放映一场,不同的放映次序有()A.种 B.4种C.种 D.种5.若,则的虚部为()A. B.C. D.6.已知点是双曲线的左焦点,是双曲线右支上一动点,过点作轴垂线并延长交双曲线左支于点,当点向上移动时,的值()A.增大 B.减小C.不变 D.无法确定7.在区间内随机取一个数则该数满足的概率为()A. B.C. D.8.在平面直角坐标系中,椭圆的左、右焦点分别为,,过且垂直于轴的直线与交于,两点,与轴交于点,,则的离心率为()A. B.C. D.9.阅读如图所示程序框图,运行相应的程序,输出S的结果是()A.128 B.64C.16 D.3210.已知甲、乙、丙三名同学同时独立地解答一道导数试题,每人均有的概率解答正确,且三个人解答正确与否相互独立,在三人中至少有两人解答正确的条件下,甲解答不正确的概率A. B.C. D.11.如图,在平行六面体中,AC与BD的交点为M,设,,,则下列向量中与相等的向量是()A. B.C. D.12.在平行六面体中,点P在上,若,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.点到直线的距离为______.14.已知,为椭圆C的焦点,点P在椭圆C上,,则的面积为___________.15.在中,,,的外接圆半径为,则边c的长为_____.16.在1和9之间插入三个数,使这五个数成等比数列,则中间三个数的积等于________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列满足且.(1)证明数列是等比数列;(2)设数列满足,,求数列的通项公式.18.(12分)自疫情爆发以来,由于党和国家对抗疫工作高度重视,在人民群众的不懈努力下,我国抗疫工作取得阶段性成功,国家经济很快得到复苏.在餐饮业恢复营业后,某快餐店统计了近天内每日接待的顾客人数,将前天的数据进行整理得到频率分布表和频率分布直方图.组别分组频数频率第组第组第组第组第组合计(1)求、、的值,并估计该快餐店在前天内每日接待的顾客人数的平均数;(2)已知该快餐店在前50天内每日接待的顾客人数的方差为,在后天内每日接待的顾客人数的平均数为、方差为,估计这家快餐店这天内每日接待的顾客人数的平均数和方差.()19.(12分)已知圆,是圆上一点,过A作直线l交圆C于另一点B,交x轴正半轴于点D,且A为的中点.(1)求圆C在点A处的切线方程;(2)求直线l的方程.20.(12分)在中,角、、所对的边分别为、、,且(1)求证;、、成等差数列;(2)若,的面积为,求的周长21.(12分)某工厂为了解甲、乙两条生产线所生产产品的质量,分别从甲、乙两条生产线生产的产品中各随机抽取了1000件产品,并对所抽取产品的某一质量指数进行检测,根据检测结果按分组,得到如图所示的频率分布直方图,若该工厂认定产品的质量指数不低于6为优良级产品,产品的质量指数在内时为优等品.(1)用统计有关知识判断甲、乙两条生产线所生产产品的质量哪一条更好,并说明理由(同一组中的数据用该组区间的中点值作代表);(2)用分层抽样的方法从该工厂样品的优等品中抽取6件产品,在这6件产品中随机抽取2件,求抽取到的2件产品都是甲生产线生产的概率.22.(10分)如图,在正方体中,是棱的中点.(1)试判断直线与平面的位置关系,并说明理由;(2)求证:直线面.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据题意,得到两两垂直,以点为坐标原点,分别以为轴,建立空间直角坐标系,设,由题意,得到,,再由得到,求出点的轨迹,即可得出结果.【详解】由题意,两两垂直,以点为坐标原点,分别以为轴,建立如图所示的空间直角坐标系,因为底面是边长为的正方形,则,,因为为底面内的一动点,所以可设,因此,,因为平面,所以,因此,所以由得,即,整理得:,表示圆,因此,动点的轨迹在圆上.故选:A.【点睛】本题主要考查立体几何中的轨迹问题,灵活运用空间向量的方法求解即可,属于常考题型.2、D【解析】利用对立事件的概率求法求飞行目标被雷达发现的概率.【详解】由题设,飞行目标不被甲、乙发现的概率分别为、,所以飞行目标被雷达发现的概率为.故选:D3、A【解析】由题意,得,解得;故选A考点:直线的倾斜角与斜率4、C【解析】根据题意得到一部影片在4个单位轮流放映,相当于四个单位进行全排列,即可得到答案.【详解】一部影片在4个单位轮流放映,相当于四个单位进行全排列,所以不同的放映次序有种,故选:C5、A【解析】根据复数的运算化简,由复数概念即可求解.【详解】因为,所以的虚部为,故选:A6、C【解析】令双曲线右焦点为,由对称性可知,,结合双曲线的定义即可得出结果.【详解】令双曲线右焦点为,由对称性可知,,则,为常数,故选:C.7、C【解析】求解不等式,利用几何概型的概率计算公式即可容易求得.【详解】求解不等式可得:,由几何概型的概率计算公式可得:在区间内随机取一个数则该数满足的概率为.故选:.8、B【解析】由题意结合几何性质可得为等腰三角形,且,所以,求出的长,结合椭圆的定义可得答案.【详解】如图,由题意轴,轴,则又为的中点,则为的中点,又,则为等腰三角形,且,所以将代入椭圆方程得,,即所以,则由椭圆的定义可得,即则椭圆的离心率故选:B9、C【解析】根据程序框图的循环逻辑写出执行步骤,即可确定输出结果.【详解】根据流程图的执行逻辑,其执行步骤如下:1、成立,则;2、成立,则;3、成立,则;4、成立,则;5、不成立,输出;故选:C10、C【解析】记“三人中至少有两人解答正确”为事件;“甲解答不正确”为事件,利用二项分布的知识计算出,再计算出,结合条件概率公式求得结果.【详解】记“三人中至少有两人解答正确”为事件;“甲解答不正确”为事件则;本题正确选项:【点睛】本题考查条件概率的求解问题,涉及到利用二项分布公式求解概率的问题.11、B【解析】根据向量加法和减法法则即可用、、表示出.【详解】故选:B.12、C【解析】利用空间向量基本定理,结合空间向量加法的法则进行求解即可.【详解】因为,,所以有,因此,故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】直接利用点到直线的距离公式计算即可.【详解】点到直线的距离为.故答案为:.14、##【解析】设,然后根据椭圆的定义和余弦定理列方程组可求出,再由三角形的面积公式可求得结果【详解】由,得,则,设,则,在中,,由余弦定理得,,所以,所以,所以,所以,故答案为:15、【解析】由面积公式求得,结合外接圆半径,利用正弦定理得到边c的长.【详解】,从而,由正弦定理得:,解得:故答案为:16、27【解析】设公比为,利用已知条件求出,然后根据通项公式可求得答案【详解】设公比为,插入的三个数分别为,因为,所以,得,所以,故答案为:27三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】(1)根据题意可得,根据等比数列的定义,即可得证;(2)由(1)可得,可得,利用累加法即可求得数列的通项公式.【详解】(1)因为,所以,即,所以是首项为1公比为3的等比数列(2)由(1)可知,所以因为,所以……,,各式相加得:,又,所以,又当n=1时,满足上式,所以18、(1),,,平均数为;(2)平均数为,方差为.【解析】(1)计算出第组的频数,可求得的值,利用频数、频率和总数的关系可求出的值,求出第组的频率,除以组距可得的值,利用平均数公式可求得该快餐店在前天内每日接待的顾客人数的平均数;(2)设前天接待的顾客人数分别为、、、,后天接待的顾客人数分别为、、、,利用平均数公式和方差公式可求得结果.【小问1详解】解:由表可知第组的频数为,所以,,,第组的频率为,,前天内每日接待的顾客人数的平均数为:.【小问2详解】解:设前天接待的顾客人数分别为、、、,后天接待的顾客人数分别为、、、,则由(1)知前天的平均数,方差,后天的平均数,方差,故这天的平均数为,,同理,这天的方差,由以上三式可得.19、(1)(2)或【解析】(1)以直线方程的点斜式去求圆C在点A处的切线方程;(2)以A为的中点为突破口,设点法去求直线l的方程简单快捷.【小问1详解】圆可化为,圆心因为直线的斜率为,所以圆C在A点处切线斜率为2,所以切线方程为即.【小问2详解】由题意设因为是中点,所以将B代入圆C方程得解得或当时,,此时l方程为当时,,此时l方程为所以l方程为或20、(1)证明见解析(2)【解析】(1)利用正弦定理结合两角和的正弦公式求出的值,结合角的取值范围可求得角的值,可求得的值,即可证得结论成立;(2)利用三角形的面积公式可求得的值,结合余弦定理可求得的值,进而可求得的周长.【小问1详解】证明:由正弦定理及,得,所以,,所以,,,则,所以,,又,,,因此,、、成等差数列.【小问2详解】解:,,又,,故的周长为.21、(1)甲更好,详细见解析(2)【解析】(1)根据频率分布直方图计算甲、乙两条生产线所生产产品的质量指数的平均数,比较大小即可得答案;(2)由题意可知,甲、乙生产线的样品中优等品件数,利用分层抽样可得从甲生产线的样品中抽取的优等品有件件,记为,从乙生产线的样品中抽取的优等品有件,记为;列出抽取到的2件产品的所有基本事件,根据古典概型计算即可.【小问1详解】解:甲生产线所生产产品的质量指数的平均数为:=3×0.05×2+5×0.15×2+7×0.2×2+9×0.1×2=6.4;乙生产线所生产产品的质量指数的平均数为:=3×0.15×2+5×0.1×2+7×0.2×2+9×0.05×2=5.6因为,所以甲生产线生产产品质量的平均水平高于乙生产线生产产品质量的平均水平,故甲生产线所生产产品的质量更好.【小问2详解】由题意可知,甲生产线的样品中优等品有件,乙生产线的样品中优等品有件,从甲生产线的样品中抽取的优等品有件件,记为,从乙生产线的样品中抽取的优等品有件,记为;从这6件产品中随机抽取2件的情况有:(a,b),(a,c),(a,d),(a,E),(a,F),(b,c),(b,d),(b,E),(b,F),(c,d),(c,E),(c,F),(d,E),(d,F),(E,F),共15种;其中符合条件的情况有:(a,b),(a,c),(a,d),(b,c),(b,d),(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论