2026届辽宁省部分重点中学数学高二上期末质量跟踪监视试题含解析_第1页
2026届辽宁省部分重点中学数学高二上期末质量跟踪监视试题含解析_第2页
2026届辽宁省部分重点中学数学高二上期末质量跟踪监视试题含解析_第3页
2026届辽宁省部分重点中学数学高二上期末质量跟踪监视试题含解析_第4页
2026届辽宁省部分重点中学数学高二上期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届辽宁省部分重点中学数学高二上期末质量跟踪监视试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知等比数列的前项和为,首项为,公比为,则()A. B.C. D.2.已知数列的前项和为,当时,()A.11 B.20C.33 D.353.如图,在直三棱柱中,,,D为AB的中点,点E在线段上,点F在线段上,则线段EF长的最小值为()A B.C.1 D.4.已知点F是双曲线的左焦点,点E是该双曲线的右顶点,过F作垂直于x轴的直线与双曲线交于G、H两点,若是锐角三角形,则该双曲线的离心率e的取值范围是()A. B.C. D.5.中国明代商人程大位对文学和数学颇感兴趣,他于60岁时完成杰作《直指算法统宗》.这是一本风行东亚的数学名著,该书A.76石 B.77石C.78石 D.79石6.如图,在平行六面体中,设,,,用基底表示向量,则()A. B.C. D.7.直线与圆的位置关系是()A.相交 B.相切C.相离 D.不确定8.已知直线l和两个不同的平面,,,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件9.设等差数列的前n项和为,,公差为d,,,则下列结论不正确的是()A. B.当时,取得最大值C. D.使得成立的最大自然数n是1510.如图已知正方体,点是对角线上的一点且,,则()A.当时,平面 B.当时,平面C.当为直角三角形时, D.当的面积最小时,11.若双曲线的离心率为3,则的最小值为()A. B.1C. D.212.在中国共产党建党100周年之际,广安市某中学组织了“党史知识竞赛”活动,已知该校共有高中学生1000人,用分层抽样的方法从该校高中学生中抽取一个容量为25的样本参加活动,其中高二年级抽取了8人,则该校高二年级学生人数为()A.960 B.720C.640 D.320二、填空题:本题共4小题,每小题5分,共20分。13.某人有楼房一栋,室内面积共计,拟分割成两类房间作为旅游客房,大房间每间面积为,可住游客4名,每名游客每天的住宿费100元;小房间每间面积为,可住游客2名,每名游客每天的住宿费150元;装修大房间每间需要3万元,装修小房间每间需要2万元.如果他只能筹款25万元用于装修,且假定游客能住满客房,则该人一天能获得的住宿费的最大值为___________元.14.一个高为2的圆柱,底面周长为2,该圆柱的表面积为.15.记为等差数列{}的前n项和,若,,则=_________.16.已知曲线在处的切线方程为,则________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆C:的左右焦点分别为,,点P是椭圆C上位于第二象限的任一点,直线l是的外角平分线,过左焦点作l的垂线,垂足为N,延长交直线于点M,(其中O为坐标原点),椭圆C的离心率为(1)求椭圆C的标准方程;(2)过右焦点的直线交椭圆C于A,B两点,点T在线段AB上,且,点B关于原点的对称点为R,求面积的取值范围.18.(12分)在平面直角坐标系xOy中,已知椭圆的离心率为,且短轴长为2.(1)求椭圆C的方程;(2)设椭圆C的上顶点为B,右焦点为F,直线l与椭圆交于M,N两点,问是否存在直线l,使得F为的垂心,若存在,求出直线l的方程;若不存在,说明理由.19.(12分)如图,PA⊥平面ABCD,四边形ABCD是正方形,PA=AD=2,M、N分别是AB、PC的中点(1)求证:平面MND⊥平面PCD;(2)求点P到平面MND的距离20.(12分)已知的顶点,边上的中线所在直线方程为,边上的高所在直线方程为.求:(1)顶点的坐标;(2)直线的方程.21.(12分)某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),┄,[80,90],并整理得到如下频率分布直方图:(1)已知样本中分数在[40,50)的学生有5人,试估计总体中分数小于40的人数;(2)试估计测评成绩的75%分位数;(3)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例22.(10分)已知圆的圆心在直线上,且过点(1)求圆的方程;(2)已知直线经过原点,并且被圆截得的弦长为2,求直线l的方程.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据求解即可.【详解】因为等比数列,,所以.故选:D2、B【解析】由数列的性质可得,计算可得到答案.【详解】由题意,.故答案为B.【点睛】本题考查了数列的前n项和的性质,属于基础题.3、B【解析】根据给定条件建立空间直角坐标系,令,用表示出点E,F坐标,再由两点间距离公式计算作答.【详解】依题意,两两垂直,建立如图所示的空间直角坐标系,则,,设,则,设,有,线段EF长最短,必满足,则有,解得,即,因此,,当且仅当时取“=”,所以线段EF长的最小值为.故选:B4、B【解析】根据是等腰三角形且为锐角三角形,得到,即,解得离心率范围.【详解】,当时,,,不妨取,,是等腰三角形且为锐角三角形,则,即,,即,,解得,故.故选:B.5、C【解析】设出未知数,列出方程组,求出答案.【详解】设甲、乙、丙分得的米数为x+d,x,x-d,则,解得:d=18,,解得:x=60,所以x+d=60+18=78(石)故选:C6、B【解析】直接利用空间向量基本定理求解即可【详解】因为在平行六面体中,,,,所以,故选:B7、A【解析】首先求出直线过定点,再判断点在圆内,即可判断;【详解】解:直线恒过定点,又,即点在圆内部,所以直线与圆相交;故选:A8、D【解析】根据直线、平面的位置关系,应用定义法判断两个条件之间的充分、必要性.【详解】当,时,直线l可与平行、相交,故不一定成立,即充分性不成立;当,时,直线l可在平面内,故不一定成立,即必要性不成立.故选:D.9、D【解析】根据等差数列等差中项的性质,求和公式及单调性分别判断.【详解】因为,,所以,则,故A正确;当时,取得最大值,故B正确;,故C正确;因为,,,所以使得成立的最大自然数是,故D错误.故选:D10、D【解析】建立空间直角坐标系,利用空间向量法一一计算可得;【详解】解:由题可知,如图令正方体的棱长为1,建立空间直角坐标系,则,,,,,,,所以,因为,所以,所以,,,,设平面的法向量为,则,令,则,,所以对于A:若平面,则,则,解得,故A错误;对于B:若平面,则,即,解得,故B错误;当为直角三角形时,有,即,解得或(舍去),故C错误;设到的距离为,则,当的面积最小时,,故正确故选:11、D【解析】由双曲线的离心率为3和,求得,化简,结合基本不等式,即可求解.【详解】由题意,双曲线的离心率为3,即,即,又由,可得,所以,当且仅当,即时,“”成立.故选:D【点睛】使用基本不等式解答问题的策略:1、利用基本不等式求最值时,要注意三点:一是各项为正;二是寻求定值;三是考虑等号成立的条件;2、若多次使用基本不等式时,容易忽视等号的条件的一致性,导致错解;3、巧用“拆”“拼”“凑”:在使用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中的“正、定、等”的条件.12、D【解析】由分层抽样各层成比例计算即可【详解】设高二年级学生人数为,则,解得故选:D二、填空题:本题共4小题,每小题5分,共20分。13、3600【解析】先设分割大房间为间,小房间为间,收益为元,列出约束条件,再根据约束条件画出可行域,设,再利用的几何意义求最值,只需求出直线过可行域内的整数点时,从而得到值即可【详解】解:设装修大房间间,小房间间,收益为万元,则,目标函数,由,解得画出可行域,得到目标函数过点时,有最大值,故应隔出大房间3间和小房间8间,每天能获得最大的房租收益最大,且为3600元故答案为:360014、6【解析】2r=2,r=1,S表=2rh+2r2=4+2=6.15、18【解析】根据等差数列通项和前n项和公式即可得到结果.【详解】设等差数列的公差为,由,得,解得,所以故答案为:1816、1【解析】先求导,由,代入即得解【详解】由题意,故答案为:1三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据题意可得到的值,结合椭圆的离心率,即可求得b,求得答案;(2)由可得,进一步推得,于是设直线方程和椭圆方程联立,利用根与系数的关系,求得弦长,表示出三角形AOB的面积,利用换元法结合二次函数的性质求其范围.【小问1详解】由题意可知:为的中点,为的中点,为的中位线,,,又,故,即,,又,,,椭圆的标准方程为;【小问2详解】由题意可知,,,①当过的直线与轴垂直时,,,②当过的直线不与轴垂直时,可设,,直线方程为,联立,可得:.,,,由弦长公式可知,到距离为,故,令,则原式变为,令,原式变为当时,故,由①②可知.【点睛】本题考查了椭圆方程的求解,以及直线和椭圆相交时的三角形的面积问题,考查学生的计算能力和数学素养,解答的关键是计算三角形面积时要理清运算的思路,准确计算.18、(1)(2)存在,【解析】(1)根据离心率及短轴长,利用椭圆中的关系可以求出椭圆方程;(2)设直线的方程,与椭圆方程联立,根据一元二次方程根与系数关系,结合已知和斜率公式,可以求出直线的方程.【小问1详解】,,,,椭圆的标准方程为.【小问2详解】由已知可得,,,∴,∵,设直线的方程为:,代入椭圆方程整理得,设,,则,,∵,∴.即,因为,,即..所以,或.又时,直线过点,不合要求,所以.故存在直线:满足题设条件.19、(1)见解析;(2)【解析】(1)作出如图所示空间直角坐标系,根据题中数据可得、、的坐标,利用垂直向量数量积为零的方法算出平面、平面的法向量分别为,,和,1,,算出,可得,从而得出平面平面;(2)由(1)中求出的平面法向量,,与向量,2,,利用点到平面的距离公式加以计算即可得到点到平面的距离【详解】(1)证明:平面,,、、两两互相垂直,如图所示,分别以、、所在直线为轴、轴和轴建立空间直角坐标系,则,0,,,0,,,2,,,2,,,0,,,0,,,1,,,1,,,1,,,2,设,,是平面的一个法向量,可得,取,得,,,,是平面的一个法向量,同理可得,1,是平面的一个法向量,,,即平面的法向量与平面的法向量互相垂直,可得平面平面;(2)解:由(1)得,,是平面的一个法向量,,2,,得,点到平面的距离20、(1);(2).【解析】(1)求出直线的方程,然后联立直线、的方程,即可求得点的坐标;(2)设,可求得线段的中点的坐标,将点的坐标代入直线的方程,可求得的值,可得出点的坐标,进而利用直线的斜率和点斜式可得出直线的方程.【小问1详解】解:,所以,而,则,所以直线的方程为,由,解得,所以顶点的坐标为.【小问2详解】解:因为在直线,所以可设,由为线段的中点,所以,将的坐标代入直线的方程,所以,解得,所以.故,故直线的方程为,即.21、(1)20人(2)(3)【解析】(1)根据频率分布直方图先求出样本中分数在[40,90)的频率,即可解出;(2)先根据频率分布直方图判断出75%分位数在[70,80)之间,即可根据分位数公式算出;(3)根据频率分布直方图知分数不小于70分的人数中男女各占30人,从而可知样本中男生有60人,女生有40人,即可求出总体中男生和女生人数的比例【小问1详解】由频率分布直方图知,分数在[50,90)频率为(0.01+0.02+0.04+0.02)×10=0.9,在样本中分数在[50,90)的人数为100×0.9=90(人),在样本中分数在[40,90)的人数为95人,所以分数在[40,90)的人数为400×0.95=380(人),总体中分数小于40的人数为20人【小问2详解】测试成绩从低到高排序,占人数75%的人分数在[70,80)之间,所以估计测评成绩的75%分位数为【小问3详解】由频率分布直方图知,分数不小于70分的人数共有60人,由已知男女各占30人,从而样本中男生有60人,女生有40人,故总体中男生与女生的比例为22、(1);(2)或.【解析】(1)根据题意设圆心坐标为,进而得,解得,故圆的方程为(2)分直线的斜率存在和不存在两种情况讨论求

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论