版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届云南省昭通市三中数学高二上期末学业水平测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,若斜边长为的等腰直角(与重合)是水平放置的的直观图,则的面积为()A.2 B.C. D.82.如果在一实验中,测得的四组数值分别是,则y与x之间的回归直线方程是()A. B.C. D.3.执行如图所示的算法框图,则输出的结果是()A. B.C. D.4.设变量x,y满足约束条件则目标函数的最小值为()A.3 B.1C.0 D.﹣15.已知,且,则实数的值为()A. B.3C.4 D.66.已知等差数列的前n项和为,公差,若(,),则()A.2023 B.2022C.2021 D.20207.已知抛物线的焦点坐标是,则抛物线的标准方程为A. B.C. D.8.已知圆与圆相交于A、B两点,则圆上的动点P到直线AB距离的最大值为()A. B.C. D.9.在等差数列中,,,则()A. B.C. D.10.已知,设函数,若关于的不等式恒成立,则的取值范围为()A. B.C. D.11.已知数列为等比数列,则“,”是“为递减数列”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件12.关于的不等式的解集为()A. B.C.或 D.二、填空题:本题共4小题,每小题5分,共20分。13.某市开展“爱我内蒙,爱我家乡”摄影比赛,9位评委给参赛作品A打出的分数如茎叶图所示,记分员算得平均分为91,复核员在复核时,发现一个数字(茎叶图中的x)无法看清,若记分员计算无误,则数字x应该是______14.已知正项等比数列的前n项和为,且,则的最小值为_________15.已知点P为椭圆上的任意一点,点,分别为该椭圆的左、右焦点,则的最大值为______________.16.已知等差数列的前n项和为公差为d,且满足则的取值范围是_____________,的取值范围是_____________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)求适合下列条件的双曲线的标准方程:(1)焦点坐标为,且经过点;(2)焦点在坐标轴上,经过点.18.(12分)某学校为了调查本校学生在一周内零食方面的支出情况,抽出了一个容量为的样本,分成四组,,,,其频率分布直方图如图所示,其中支出金额在元的学生有180人.(1)请求出的值;(2)如果采用分层抽样的方法从,内共抽取5人,然后从中选取2人参加学校的座谈会,求在,内正好各抽取一人的概率为多少.19.(12分)已知函数,记f(x)的导数为f′(x).若曲线f(x)在点(1,f(1))处的切线斜率为﹣3,且x=2时y=f(x)有极值,(Ⅰ)求函数f(x)的解析式;(Ⅱ)求函数f(x)在[﹣1,1]上的最大值和最小值20.(12分)已知函数(1)求函数在点处的切线方程;(2)求函数的单调区间及极值21.(12分)如图,在平面直角标系中,已知n个圆与x轴和线均相切,且任意相邻的两个圆外切,其中圆.(1)求数列通项公式;(2)记n个圆的面积之和为S,求证:.22.(10分)已知圆C经过点,,且圆心C在直线上(1)求圆C的标准方程;(2)过点向圆C引两条切线PD,PE,切点分别为D,E,求切线PD,PE的方程,并求弦DE的长
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】由斜二测还原图形计算即可求得结果.【详解】在斜二测直观图中,由为等腰直角三角形,,可得,.还原原图形如图:则,则.故选:C2、B【解析】根据已知数据求样本中心点,由样本中心点在回归直线上,将其代入各选项的回归方程验证即可.【详解】由题设,,因为回归直线方程过样本点中心,A:,排除;B:,满足;C:,排除;D:,排除.故选:B3、B【解析】列举出循环的每一步,利用裂项相消法可求得输出结果.【详解】第一次循环,不成立,,;第二次循环,不成立,,;第三次循环,不成立,,;以此类推,最后一次循环,不成立,,.成立,跳出循环体,输出.故选:B.4、C【解析】线性规划问题,作出可行域后,根据几何意义求解【详解】作出可行域如图所示,,数形结合知过时取最小值故选:C5、B【解析】根据给定条件利用空间向量垂直的坐标表示计算作答.详解】因,且,则有,解得,所以实数的值为3.故选:B6、C【解析】根据题意令可得,结合等差数列前n项和公式写出,进而得到关于的方程,解方程即可.【详解】因为,令,得,又,,所以,有,解得.故选:C7、D【解析】根据抛物线的焦点坐标得到2p=4,进而得到方程.【详解】抛物线的焦点坐标是,即p=2,2p=4,故得到方程为.故答案为D.【点睛】这个题目考查了抛物线的标准方程的求法,题目较为简单.8、A【解析】判断圆与的位置并求出直线AB方程,再求圆心C到直线AB距离即可计算作答.【详解】圆的圆心,半径,圆的圆心,半径,,,即圆与相交,直线AB方程为:,圆的圆心,半径,点C到直线AB距离的距离,所以圆C上的动点P到直线AB距离的最大值为.故选:A9、B【解析】利用等差中项的性质可求得的值,进而可求得的值.【详解】由等差中项的性质可得,则.故选:B.10、D【解析】由题设易知上恒成立,而在上,讨论、,结合导数研究的最值,由不等式恒成立求的取值范围.【详解】由时,在上;由时,在上递减,值域为;令且,则,当时,,即递增,值域为,满足题设;当时,在上,即递减,在上,即递增,此时值域为;当,即时存在,而在中,此时,不合题设;所以,此时要使的不等式恒成立,只需,即,可得;综上,关于的不等式恒成立,则的取值范围为.故选:D【点睛】关键点点睛:由题设易知上,只需在上恒有即可.11、A【解析】本题可依次判断“,”是否是“为递减数列”的充分条件以及必要条件,即可得出结果.【详解】若等比数列满足、,则数列为递减数列,故“,”是“为递减数列”的充分条件,因为若等比数列满足、,则数列也是递减数列,所以“,”不是“为递减数列”的必要条件,综上所述,“,”是“为递减数列”的充分不必要条件,故选:A.【点睛】本题考查充分条件以及必要条件的判定,考查等比数列以及递减数列的相关性质,体现了基础性和综合性,考查推理能力,是简单题.12、C【解析】求出不等式对应方程的根,结合不等式和二次函数的关系,即可得到结果.【详解】不等式对应方程的两根为,因为,故可得,根据二次不等式以及二次函数的关系可得不等式的解集为或.故选:C.【点睛】本题考查含参二次不等式的求解,属基础题.二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】由平均数列出方程,求出x的值.【详解】由题意得:,解得:.故答案为:114、16【解析】根据是等比数列,由,即可得也是等比数列,结合基本不等式的性质即可求出的最小值.【详解】是等比数列,,即,也是等比数列,且,,可得:,当且仅当时取等号,的最小值为16.故答案为:1615、【解析】利用正弦定理表示出,再求t,再利用求的最大值即可.【详解】在中,由正弦定理得,所以,,即求的最大值,也就是求t的最小值,而,即最大时,由椭圆的性质知当P为椭圆上顶点时最大,此时,,所以,所以的最大值是1,,所以,故答案为:.【点睛】本题考查椭圆焦点三角形的问题,考查正弦定理的应用.16、①.②.【解析】通过判断出,进而将化为基本量求得答案;然后用基本量将化简,进而通过的范围求得答案.【详解】由,,,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)利用双曲线定义求出双曲线的实轴长即可计算作答.(2)设出双曲线的方程,利用待定系数法求解作答.【小问1详解】因双曲线的焦点坐标为,且经过点,令双曲线实半轴长为a,则有,解得,双曲线半焦距,虚半轴长b有,所以所求双曲线的标准方程为.【小问2详解】依题意,设双曲线的方程为:,于是得,解得:,所以所求双曲线的标准方程为.18、(1);(2).【解析】(1)根据频率分布直方图求出[50,60]的频率,180除以该频率即为n的值;(2)将的样本编号为a、b,将的样本编号为A、B、C,利用列举法即可求概率.【小问1详解】由于支出金额在的频率为,∴.【小问2详解】采用分层抽样抽取的的人数比应为2:3,∴5人中有2人零食支出位于,记为、;有3人零食支出在,记为A、B、C.从这5人中选取2人有,,,,,,,,,,共10种情况;其中内正好各抽取一人有,,,,,,共6种情况.∴在内正好各抽取一人的概率为.19、(Ⅰ)f(x)=x3﹣3x2+1;(Ⅱ)最大值为1,最小值为﹣3【解析】(Ⅰ)求导可得f′(x)的解析式,根据导数的几何意义,可得k=f′(1)=-3,又在x=2处有极值,所以f′(2)=0,即可求得a,b的值,即可得答案;(Ⅱ)由(Ⅰ)可得f′(x)的解析式,令f′(x)=0,解得x=0或x=2,讨论f(x)在﹣1<x<0,0<x<1上的单调性,即可求得f(x)的极值,检验边界值,即可得答案.【详解】(Ⅰ)由题意得:f′(x)=3x2+2ax+b,所以k=f′(1)=3+2a+b=﹣3,f′(2)=12+4a+b=0,解得a=﹣3,b=0,所以f(x)=x3﹣3x2+1;(Ⅱ)由(Ⅰ)知,令f′(x)=3x2﹣6x=0,解得x=0或x=2,当﹣1<x<0时,f′(x)>0,f(x)在(﹣1,0)是增函数,当0<x<1时,f′(x)<0,f(x)在(0,1)是减函数,所以f(x)的极大值为f(0)=1,又f(1)=﹣1,f(﹣1)=﹣3,所以f(x)在[﹣1,1]上的最大值为1,最小值为﹣320、(1)+1;(2)单调增区间,单调减区间是和,极大值为,极小值为【解析】(1)根据导数的几何意义可求出切线斜率,求出后利用点斜式即可得解;(2)求出函数导数后,解一元二次不等式分别求出、时的取值范围即可得解.【详解】(1)因为,所以,∴切线方程为,即+1;(2),所以当或时,,当时,,所以函数单调增区间是,单调减区间是和,极大值为,极小值为21、(1).(2)证明见解析.【解析】(1)由已知得,设圆分别切轴于点,过点作,垂足为.在从而有得,由等比数列的定义得数列是以为首项,为公比的等比数列.由此求得答案;(2)由(1)得再由圆的面积公式和等比数列求和公式计算可得证.【小问1详解】解:直线的倾斜角为则圆心在直线上,,设圆分别切轴于点,过点作,垂足为.在中,所以即化简得,变形得,所以是以为首项,为公比的等比数列.,.【小问2详解】解:由(1)得所以,所以.22、(1)(2)或,【解析】(1)设圆心,根据圆心在直线上及圆过两点建立方程
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年高职服装款式设计(设计基础)试题及答案
- 2026年化工分析(电化学分析技术)试题及答案
- 2025年高职(财务管理综合实训)投资管理实操试题及答案
- 2025年中职第三学年(防火墙技术)网络安全防护测试题及答案
- 2025年中职工业互联网技术(工业互联网基础)试题及答案
- 2025年中职第二学年(家政服务与管理)家庭膳食搭配实务测试题及答案
- 2025年中职(会计)成本核算综合试题及答案
- 2025年大学第四学年(服装设计与工程)服装综合设计试题及答案
- 2026年粉底销售(客户接待)试题及答案
- 2025年高职统计学(统计教育心理学案例分析)试题及答案
- 遗产分割协议书
- 京瓷哲学手册样本
- 形神拳动作名称与图解
- 博士生入学复试面试报告个人简历介绍含内容模板两篇
- 食品工厂设计 课件 第二章 厂址选择
- 2023年生产车间各类文件汇总
- WORD版A4横版密封条打印模板(可编辑)
- 2013标致508使用说明书
- 中考满分(合集15篇)
- 《大数据营销》-课程教学大纲
- GB/T 18993.1-2020冷热水用氯化聚氯乙烯(PVC-C)管道系统第1部分:总则
评论
0/150
提交评论