版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省宿迁市沭阳县修远中学2026届数学高二上期末调研模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知△的顶点B,C在椭圆上,顶点A是椭圆的一个焦点,且椭圆的另一个焦点在BC边上,则△的周长是()A. B.C.8 D.162.已知椭圆的左、右焦点分别为、,点在椭圆上,若,则的面积为()A. B.C. D.3.若,(),则,的大小关系是A. B.C. D.,的大小由的取值确定4.对任意实数k,直线与圆的位置关系是()A.相交 B.相切C.相离 D.与k有关5.设各项均为正项的数列满足,,若,且数列的前项和为,则()A. B.C.5 D.66.若圆上恰有2个点到直线的距离为1,则实数的取值范围为()A B.C. D.7.已知实数x,y满足约束条件,则的最大值为()A. B.0C.3 D.58.在等比数列中,若,,则()A. B.C. D.9.若命题“,”是假命题,则实数的取值范围为()A. B.C. D.10.已知是空间的一个基底,若,,若,则()A. B.C.3 D.11.已知圆的半径为,平面上一定点到圆心的距离,是圆上任意一点.线段的垂直平分线和直线相交于点,设点在圆上运动时,点的轨迹为,当时,轨迹对应曲线的离心率取值范围为()A. B.C. D.12.曲线为四叶玫瑰线,这种曲线在苜蓿叶型立交桥的布局中有非常广泛的应用,苜蓿叶型立交桥有两层,将所有原来需要穿越相交道路的转向都由环形匝道来实现,即让左转车辆行驶环道后自右侧切向汇入高速公路,四条环形匝道就形成了苜蓿叶的形状.下列结论正确的个数是()①曲线C关于点(0,0)对称;②曲线C关于直线y=x对称;③曲线C的面积超过4π.A.0 B.1C.2 D.3二、填空题:本题共4小题,每小题5分,共20分。13.已知是椭圆的两个焦点,点M在C上,则的最大值为_______14.在等比数列中,已知,则__________15.设,是双曲线的两个焦点,P是双曲线上任意一点,过作平分线的垂线,垂足为M,则点M到直线的距离的最小值是___16.已知双曲线的焦点,过F且斜率为1的直线与双曲线有且只有一个交点,则双曲线的方程为_________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在①,②,③这三个条件中任选一个,补充在下面横线上,并解答.在中,内角,,的对边分别为,,,且___________.(1)求角的大小;(2)已知,,点在边上,且,求线段的长.注:如果选择多个条件分别解答,按第一个解答计分.18.(12分)如图所示,在正方体中,E是棱的中点.(Ⅰ)求直线BE与平面所成的角的正弦值;(Ⅱ)在棱上是否存在一点F,使平面?证明你的结论.19.(12分)已知椭圆,斜率为的动直线与椭圆交于A,B两点,且直线与圆相切.(1)若,求直线的方程;(2)求三角形的面积的取值范围.20.(12分)已知圆C:的半径为1(1)求实数a的值;(2)判断直线l:与圆C是否相交?若不相交,请说明理由;若相交,请求出弦长21.(12分)已知函数.(1)当时,求的极值;(2)设函数,,,求证:.22.(10分)在平面直角坐标系中,过点且倾斜角为的直线与曲线(为参数)交于两点.(1)将曲线的参数方程转化为普通方程;(2)求的长.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据椭圆定义求解【详解】由椭圆定义得△的周长是,故选:D.2、B【解析】求出,可知为等腰三角形,取的中点,可得出,利用勾股定理求得,利用三角形的面积公式可求得结果.【详解】在椭圆中,,,则,所以,,由椭圆的定义可得,取的中点,因为,则,由勾股定理可得,所以,.故选:B.3、A【解析】∵且,∴,又,∴,故选A.4、A【解析】判断直线恒过定点,可知定点在圆内,即可判断直线与圆的位置关系.【详解】由可知,即该圆的圆心坐标为,半径为,由可知,则该直线恒过定点,将点代入圆的方程可得,则点在圆内,则直线与圆的位置关系为相交.故选:.5、D【解析】由利用因式分解可得,即可判断出数列是以为首项,为公差的等差数列,从而得到数列,数列的通项公式,进而求出【详解】等价于,而,所以,即可知数列是以为首项,为公差的等差数列,即有,所以,故故选:D6、A【解析】求得圆心到直线的距离,根据题意列出的不等关系式,即可求得的范围.【详解】因为圆心到直线的距离,故要满足题意,只需,解得.故选:A.7、D【解析】先画出可行域,由,得,作出直线,向上平移过点A时,取得最大值,求出点A的坐标,代入可求得结果【详解】不等式组表示的可行域,如图所示由,得,作出直线,向上平移过点A时,取得最大值,由,得,即,所以的最大值为,故选:D8、D【解析】由等比数列的性质得,化简,代入数值求解.【详解】因为数列是等比数列,所以,由题意,所以.故选:D9、A【解析】根据命题与它的否定命题一真一假,写出该命题的否定命题,再求实数的取值范围【详解】解:命题“,”是假命题,则它的否定命题“,”是真命题,时,不等式为,显然成立;时,应满足,解得,所以实数的取值范围是故选:A10、C【解析】由,可得存在实数,使,然后将代入化简可求得结果【详解】,,因,所以存在实数,使,所以,所以,所以,得,,所以,故选:C11、D【解析】分点A在圆内,圆外两种情况,根据中垂线的性质,结合椭圆、双曲线的定义可判断轨迹,再由离心率计算即可求解.【详解】当A在圆内时,如图,,所以的轨迹是以O,A为焦点的椭圆,其中,,此时,,.当A在圆外时,如图,因为,所以轨迹是以O,A为焦点的双曲线,其中,,此时,,.综上可知,.故选:D12、C【解析】根据图像或解析式即可判断对称性①②;估算第一象限内图像面积即可判断③.【详解】①将点(-x,-y)代入后依然为,故曲线C关于原点对称;②将点(y,x)代入后依然为,故曲线C关于y=x对称;③曲线C在四个象限的图像是完全相同的,不妨只研究第一象限的部分,∵,∴曲线C上离原点最远的点的距离为显然第一象限内曲线C的面积小于以为直径的圆的面积,又∵,∴第一象限内曲线C的面积小于,则曲线C的总面积小于4π.故③错误.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、16【解析】根据椭圆定义可得:,再用基本不等式求解.【详解】由椭圆的定义可得:,由基本不等式得:,当且仅当时,等号成立,故的最大值为16故答案为:1614、32【解析】根据已知求出公比即可求出答案.【详解】设等比数列的公比为,则,则,所以.故答案为:32.15、1【解析】构造全等三角形,结合双曲线定义,求得点的轨迹方程,再根据直线与圆的位置关系,即可求得点到直线距离的最小值.【详解】延长交的延长线于点,如下所示:因为平分,且,故△△,则,又,则,又在△中,分别为的中点,故可得;设点的坐标为,则,即点在圆心为,半径的圆上,圆心到直线的距离,故点到直线距离的最小值为.故答案为:.【点睛】本题考查双曲线的定义,以及直线与圆的位置关系,解决问题的关键在于通过几何关系求得点的轨迹方程,属中档题.16、【解析】根据直线与双曲线只有一个交点可知直线与双曲线平行,由渐近线斜率可列出的齐次方程,利用齐次方程求解.【详解】直线与双曲线有且只有一个交点,且焦点,直线与双曲线渐近线平行,,即,,即,.则双曲线的方程为故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)若选①,则根据正弦定理,边化角,结合二倍角公式,求得,可得答案;若选②,则根据余弦定理和三角形面积公式,将化简,求得,可得答案;若选③,则切化弦,化简可得到的值,求得答案;(2)由余弦定理求出,进而求得,设,,在中用余弦定理列出方程,求得答案.【小问1详解】若选①,则根据正弦定理可得:,由于,,故,则;若选②,则,即,则,而,故;若选③,则,即,则,而,故;【小问2详解】如图示:,故,故,在中,设,则,则,即,解得,或(舍去)故.18、(1);(2)详见解析【解析】设正方体的棱长为1.如图所示,以为单位正交基底建立空间直角坐标系.(Ⅰ)依题意,得,所以.在正方体中,因为,所以是平面的一个法向量,设直线BE和平面所成的角为,则.即直线BE和平面所成的角的正弦值为.(Ⅱ)在棱上存在点F,使.事实上,如图所示,分别取和CD的中点F,G,连结.因,且,所以四边形是平行四边形,因此.又E,G分别为,CD的中点,所以,从而.这说明,B,G,E共面,所以.因四边形与皆为正方形,F,G分别为和CD的中点,所以,且,因此四边形是平行四边形,所以.而,,故.19、(1)或(2)【解析】(1)设直线,利用圆心到直线的距离等于半径,即可得到方程,求出,即可得解;(2)设,,,利用圆心到直线的距离等于半径,得到,再联立直线与椭圆方程,消元列出韦达定理,利用弦长公式表示出,再根据及基本不等式求出,最后再计算直线斜率不存在时三角形的面积,即可得解;【小问1详解】解:圆,圆心为,半径;设直线,即,则,解得,所以或;【小问2详解】解:因为直线的斜率存在,设,,,即,则,所以,即,联立,消元整理得,所以,,所以所以因为,所以,当且仅当,即时取等号,所以,当轴时,取,,则,此时,所以;20、(1);(2)直线l与圆C相交,.【解析】(1)利用配方法进行求解即可;(2)根据点到直线距离公式,结合圆的弦长公式进行求解即可.【小问1详解】将化为标准方程得:因为圆C的半径为1,所以,得【小问2详解】由(1)知圆C的圆心为,半径为1设圆心C到直线l的距离为d,则,所以直线l与圆C相交,设其交点为A,B,则,即21、(1),无极大值(2)证明见解析【解析】(1)求出函数的导数,判断函数的单调性,进而确定极值点,求得答案;(2)将要证明的不等式变形为,然后构造函数,利用导数判断其单调性,求其最值,进而证明结论.【小问1详解】当时,,,由得,列表得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 妊娠期急性脂肪肝的围手术期管理策略
- 妊娠合并高血压的全程管理策略与实践
- 冲压安全试题题库及答案
- 妇科肿瘤生育保留的MDT患者心理支持策略
- 女职工职业健康风险评估与干预策略
- 大数据在医疗供应链风险预测中的应用
- 多组织损伤的一期修复策略
- 2025年高职(会计)会计电算化综合阶段测试试题及答案
- 2026年汪汪队立大功玩具用品营销(营销规范)试题及答案
- 2026年酒店前台(预订服务流程)试题及答案
- 2025年中考道德与法治三轮冲刺:主观题常用答题术语速查宝典
- 论语的测试题及答案
- 教师年薪合同协议
- 地铁保护专项施工方案中建A3版面
- 陕西省榆林市2025届高三第二次模拟检测英语试题(含解析含听力原文无音频)
- 2025年湖北武汉市华中科技大学航空航天学院李仁府教授课题组招聘2人历年高频重点提升(共500题)附带答案详解
- 产品检验控制程序培训
- 早教师培训课件-01第一章早教师岗位要求第一节早教师工作内容与就业趋向
- 村级财务审计合同模板
- 改善就医感受,提升患者体验工作总结
- 12-重点几何模型-手拉手模型-专题训练
评论
0/150
提交评论