版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届福建省厦门市英才学校数学高一上期末检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.总体由编号为01,02,...,19,20的20个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表的第1行第5列和第6列数字开始由左向右依次选取两个数字,则选出来的第5个个体的编号为()7961950784031379510320944316831718696254073892615789810641384975A.20 B.18C.17 D.162.下列四个函数中,在上为增函数的是()A. B.C. D.3.下列函数中,既是偶函数,又在区间上单调递增的函数为A. B.C. D.4.若,,,则()A. B.C. D.5.生物体死亡后,它机体内原有的碳14含量会按确定的比率衰减(称为衰减率),与死亡年数之间的函数关系式为(其中为常数),大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.若2021年某遗址文物出土时碳14的残余量约占原始含量的,则可推断该文物属于()参考数据:参考时间轴:A.宋 B.唐C.汉 D.战国6.已知实数满足,则函数的零点在下列哪个区间内A. B.C. D.7.已知函数有唯一零点,则负实数()A. B.C.-3 D.-28.半径为,圆心角为弧度的扇形的面积为()A. B.C. D.9.已知集合,,若,则A. B.C. D.10.如图所示,一个水平放置的平面图形的直观图是一个底角为45°,腰和上底长均为1的等腰梯形,则该平面图形的面积等于()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.某种候鸟每年都要随季节的变化而进行大规模的迁徙,研究候鸟的专家发现,该种鸟类的飞行速度(单位:m/s)与其耗氧量之间的关系为(其中、是实数).据统计,该种鸟类在耗氧量为80个单位时,其飞行速度为18m/s,则________;若这种候鸟飞行的速度不能低于60m/s,其耗氧量至少要________个单位.12.函数(且)的图象必经过点___________.13.函数的值域为,则实数a的取值范围是______14.已知函数,的部分图象如图所示,其中点A,B分别是函数的图象的一个零点和一个最低点,且点A的横坐标为,,则的值为________.15.如图所示,某农科院有一块直角梯形试验田,其中.某研究小组计则在该试验田中截取一块矩形区域试种新品种的西红柿,点E在边上,则该矩形区域的面积最大值为___________.16.已知函数,实数,满足,且,若在上的最大值为2,则____三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)求的最小正周期;(2)当时,求的最大值和最小值.18.已知函数(1)求函数的最小正周期和单调递增区间;(2)若,且,求的值.19.某种树木栽种时高度为A米为常数,记栽种x年后的高度为,经研究发现,近似地满足,其中,a,b为常数,,已知,栽种三年后该树木的高度为栽种时高度的3倍(Ⅰ)求a,b的值;(Ⅱ)求栽种多少年后,该树木的高度将不低于栽种时的5倍参考数据:,20.已知函数.(1)求的定义域和的值;(2)当时,求,的值.21.已知函数,(1)求不等式的解集;(2)若有两个不同的实数根,求a的取值范围
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】利用随机数表从给定位置开始依次取两个数字,根据与20的大小关系可得第5个个体的编号.【详解】从随机数表的第1行第5列和第6列数字开始由左向右依次选取两个数字,小于或等于20的5个编号分别为:07,03,13,20,16,故第5个个体编号为16.故选:D.【点睛】本题考查随机数表抽样,此类问题理解抽样规则是关键,本题属于容易题.2、C【解析】A.利用一次函数的性质判断;B.利用二次函数的性质判断;C.利用反比例函数的性质判断;D.由,利用一次函数的性质判断;【详解】A.由一次函数的性质知:在上为减函数,故错误;B.由二次函数的性质知:在递减,在上递增,故错误;C.由反比例函数的性质知:在上递增,在递增,则在上为增函数,故正确;D.由知:函数在上为减函数,故错误;故选:C【点睛】本题主要考查一次函数,二次函数和反比例函数的单调性,属于基础题.3、C【解析】选项A中,函数的定义域为,不合题意,故A不正确;选项B中,函数的定义域为,无奇偶性,故B不正确;选项C中,函数为偶函数,且当x>0时,,为增函数,故C正确;选项D中,函数为偶函数,但在不是增函数,故D不正确选C4、A【解析】先变形,然后利用指数函数的性质比较大小即可【详解】,因为在上为减函数,且,所以,所以,故选:A5、D【解析】根据给定条件可得函数关系,取即可计算得解.【详解】依题意,当时,,而与死亡年数之间的函数关系式为,则有,解得,于是得,当时,,于是得:,解得,由得,对应朝代为战国,所以可推断该文物属于战国.故选:D6、B【解析】由3a=5可得a值,分析函数为增函数,依次分析f(﹣2)、f(﹣1)、f(0)的值,由函数零点存在性定理得答案【详解】根据题意,实数a满足3a=5,则a=log35>1,则函数为增函数,且f(﹣2)=(log35)﹣2+2×(﹣2)﹣log53<0,f(﹣1)=(log35)﹣1+2×(﹣1)﹣log53=﹣2<0,f(0)=(log35)0﹣log53=1﹣log53>0,由函数零点存在性可知函数f(x)的零点在区间(﹣1,0)上,故选B【点睛】本题考查函数零点存在性定理的应用,分析函数的单调性是关键7、C【解析】注意到直线是和的对称轴,故是函数的对称轴,若函数有唯一零点,零点必在处取得,所以,又,解得.选C.8、A【解析】由扇形面积公式计算【详解】由题意,故选:A9、A【解析】利用两个集合的交集所包含的元素,求得的值,进而求得.【详解】由于,故,所以,故,故选A.【点睛】本小题主要考查两个集合交集元素的特征,考查两个集合的并集的概念,属于基础题.10、D【解析】根据斜二测画法的规则,得出该平面图象的特征,结合面积公式,即可求解.【详解】由题意,根据斜二测画法规则,可得该平面图形是上底长为,下底长为,高为的直角梯形,所以计算得面积为.故选:D.二、填空题:本大题共6小题,每小题5分,共30分。11、①.6②.10240【解析】由初始值解出的值,然后令,可得出的取值范围,由此得出候鸟在飞行时速度不低于时的最低耗氧量.【详解】由题意,知,解得,所以,要使飞行速度不能低于,则有,即,即,解得,即,所以耗氧量至少要个单位.故答案为:6;10240【点睛】本题考查对数的应用,解题的关键就是要利用题中数据解出函数解析式,利用题意列出不等式进行求解.12、【解析】令得,把代入函数的解析式得,即得解.【详解】解:因为函数,其中,,令得,把代入函数的解析式得,所以函数(且)的图像必经过点的坐标为.故答案为:13、【解析】分,,三类,根据一次函数和二次函数的性质可解.【详解】当时,,易知此时函数的值域为;当时,二次函数图象开口向下,显然不满足题意;当时,∵函数的值域为,∴,解得或,综上,实数a的取值范围是,故答案为:.14、##【解析】利用条件可得,进而利用正弦函数的图象的性质可得,再利用正弦函数的性质即求.【详解】由题知,设,则,∴,∴,∴,将点代入,解得,又,∴.故答案为:.15、【解析】设,求得矩形面积的表达式,结合基本不等式求得最大值.【详解】设,,,,所以矩形的面积,当且仅当时等号成立.故选:16、4【解析】由题意结合函数的解析式分别求得a,b的值,然后求解的值即可.【详解】绘制函数的图像如图所示,由题意结合函数图像可知可知,则,据此可知函数在区间上的最大值为,解得,且,解得:,故.【点睛】本题主要考查函数图像的应用,对数的运算法则等知识,意在考查学生的转化能力和计算求解能力.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)最大值为,最小值为.【解析】(1)展开两角差的余弦,再由辅助角公式化简,利用周期公式求周期;(2)由x的范围求出相位的范围,再由正弦函数的有界性可求函数在区间上的最大值和最小值.【小问1详解】,,的最小正周期为;【小问2详解】因,所以,所以,所以函数在区间上的最大值为,最小值为.18、(1)(2)【解析】(1)运用两角和(差)的正弦公式、二倍角的正余弦公式、辅助角公式化简函数的解析式,最后根据正弦型函数的最小正周期公式进行求解即可;(2)运用换元法,结合正弦函数的性质进行求解即可.【小问1详解】故的最小正周期为,由得,所以增区间是;【小问2详解】由(1)知由得:,因为,所以,所以19、(Ⅰ),;(Ⅱ)5年.【解析】Ⅰ由及联立解方程组可得;Ⅱ解不等式,利用对数知识可得【详解】Ⅰ,,
,又,即,,联立解得,,Ⅱ由Ⅰ得,由得,,故栽种5年后,该树木的高度将不低于栽种时的5倍【点睛】本题考查了函数解析式的求解及对数的运算,考查了函数的实际应用问题,属于中档题20、(1)定义域为,;(2),.【解析】(1)由根式、分式的性质求函数定义域,将自变量代入求即可.(2)根据a的范围,结合(1)的定义域判断所求函数值是否有意义,再将自变量代入求值即可.【小问1详解】由,则定义域为,且.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 大数据在精准医疗中的整合策略
- 2026年非小细胞肺癌少见靶点项目商业计划书
- 2026年智能光影玩具项目可行性研究报告
- 走进科学活动策划方案(3篇)
- 红色参观活动方案策划(3篇)
- 包茎手术的麻醉管理制度(3篇)
- 2026年选调生招录笔试定向选调申论贯彻执行易错题及解答
- 2026年汽车行业创新报告及自动驾驶技术商业化报告
- 2026年就业歧视防治试题及合规就业指引含答案
- 2026年文化市场法律法规考核核心试题及答案
- 新一代能源管理系统建设方案
- 小型手持式采茶机
- 人工智能与终身学习体系构建研究报告
- 2025杭州市市级机关事业单位编外招聘考试备考试题及答案解析
- 化学反应原理大题集训(含解析)-2026届高中化学一轮复习讲义
- 团队成员介绍课件
- 医院敏感数据安全管理规范
- 政协机车辆管理办法
- 渝22TS02 市政排水管道附属设施标准图集 DJBT50-159
- 母婴护理员职业道德课件
- 电力工程应急管理措施
评论
0/150
提交评论