版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届河南省郑州一〇六中学高二数学第一学期期末考试试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.双曲线(,)的一条渐近线的倾斜角为,则离心率为()A. B.C.2 D.42.在四棱锥中,分别为的中点,则()A. B.C. D.3.已知数列的通项公式为,是数列的最小项,则实数的取值范围是()A. B.C. D.4.设等差数列前n项和是,若,则的通项公式可以是()A. B.C. D.5.已知双曲线,则双曲线M的渐近线方程是()A. B.C. D.6.从编号为1~120的商品中利用系统抽样的方法抽8件进行质检,若所抽样本中含有编号66的商品,则下列编号一定被抽到的是()A.111 B.52C.37 D.87.圆心在直线上,且过点,并与直线相切的圆的方程为()A. B.C. D.8.已知圆C过点,圆心在x轴上,则圆C的方程为()A. B.C. D.9.【2018江西抚州市高三八校联考】已知双曲线(,)与抛物线有相同的焦点,且双曲线的一条渐近线与抛物线的准线交于点,则双曲线的离心率为()A. B.C. D.10.某市2016年至2020年新能源汽车年销量y(单位:百台)与年份代号x的数据如下表:年份20162017201820192020年份代号x01234年销量y1015m3035若根据表中的数据用最小二乘法求得y关于x的回归直线方程为,则表中m的值为()A.22 B.20C.30 D.32.511.已知F是椭圆C的一个焦点,B是短轴的一个端点,直线BF与椭圆C的另一个交点为D,且,则C的离心率为()A. B.C. D.12.已知i是虚数单位,复数z=,则复数z的虚部为()A.i B.-iC.1 D.-1二、填空题:本题共4小题,每小题5分,共20分。13.已知数列an满足,则__________14.设,若,则S=________.15.已知数列满足0,,则数列的通项公式为____,则数列的前项和______16.已知抛物线:()的焦点到准线的距离为4,过点的直线与抛物线交于,两点,若,则______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,.(1)若函数与在x=1处的切线平行,求函数在处的切线方程;(2)当时,若恒成立,求实数a的取值范围.18.(12分)两个顶点、的坐标分别是、,边、所在直线的斜率之积等于,顶点的轨迹记为.(1)求顶点的轨迹的方程;(2)若过点作直线与轨迹相交于、两点,点恰为弦中点,求直线的方程;(3)已知点为轨迹的下顶点,若动点在轨迹上,求的最大值.19.(12分)如图,在三棱锥中,,,为的中点.(1)求证:平面;(2)若点在棱上,且,求点到平面的距离.20.(12分)椭圆的一个顶点为,离心率(1)求椭圆方程;(2)若直线与椭圆交于不同的两点.若满足,求直线的方程21.(12分)已知函数,若函数处取得极值(1)求,的值;(2)求函数在上的最大值和最小值22.(10分)已知命题:方程有实数解,命题:,.(1)若是真命题,求实数的取值范围;(2)若为假命题,且为真命题,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据双曲线方程写出渐近线方程,得出,进而可求出双曲线的离心率.【详解】因为双曲线的渐近线方程为,又其中一条渐近线的倾斜角为,所以,则,所以该双曲线离心率为.故选:C.2、A【解析】结合空间几何体以及空间向量的线性运算即可求出结果.【详解】因为分别为的中点,则,,,故选:A.3、D【解析】利用最值的含义转化为不等式恒成立问题解决即可【详解】解:由题意可得,整理得,当时,不等式化简为恒成立,所以,当时,不等式化简为恒成立,所以,综上,,所以实数的取值范围是,故选:D4、D【解析】根据题意可得公差的范围,再逐一分析各个选项即可得出答案.【详解】解:设等差数列的公差为,由,得,所以,故AB错误;若,则,与题意矛盾,故C错误;若,则,符合题意.故选:D.5、C【解析】由双曲线的方程直接求出见解析即可.【详解】由双曲线,则其渐近线方程为:故选:C6、A【解析】先求出等距抽样的组距,从而得到被抽到的是,从而求出答案.【详解】120件商品中抽8件,故,因为含有编号66的商品被抽到,故其他能被抽到的是,当时,,其他三个选项均不合要求,故选:A7、A【解析】设圆的圆心,表示出半径,再由圆心到切线距离等于半径即可列出方程求得参数及圆的方程.【详解】∵圆的圆心在直线上,∴设圆心为(a,-a),∵圆过,∴半径r=,又∵圆与相切,∴半径r=,则,解得a=2,故圆心为(2,-2),半径为,故方程为.故选:A.8、C【解析】设出圆的标准方程,将已知点的坐标代入,解方程组即可.【详解】设圆的标准方程为,将坐标代入得:,解得,故圆的方程为,故选:C.9、C【解析】由题意可知,抛物线的焦点坐标为,准线方程为,由在抛物线的准线上,则,则,则焦点坐标为,所以,则,解得,双曲线的渐近线方程是,将代入渐近线的方程,即,则双曲线的离心率为,故选C.10、B【解析】求出样本中心的横坐标,代入回归直线方程,求出样本中心的纵坐标,然后求解即可【详解】因为,代入回归直线方程为,所以,,于是得,解得故选:B11、A【解析】设,根据得,代入椭圆方程即可求得离心率.【详解】设椭圆方程,所以,设,所以,所以,在椭圆上,所以,.故选:A12、C【解析】先通过复数的除法运算求出z,进而求出虚部.【详解】由题意,,则z的虚部为1.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、2019【解析】将已知化为代入可以左右相消化简,将已知化为,代入可以上下相消化简,再全部代入求解即可.【详解】由知故所以故答案为:201914、1007【解析】可证f(x)+f(1﹣x)=1,由倒序相加法可得所求为1007对的组合,即1007个1,可得答案【详解】解:∵函数f(x),∴f(x)+f(1﹣x)1故可得S=f()+f()…+f()=1007×1=1007,故答案为:1007点睛】本题考查倒序相加法求和,推断出f(x)+f(1﹣x)=1是解题的关键.15、①.②.【解析】第一空:先构造等比数列求出,即可求出的通项公式;第二空:先求出,令,通过错位相减求出的前项和为,再结合等差数列的求和公式及分组求和即可求解.【详解】第一空:由可得,又,则是以1为首项,2为公比的等比数列,则,则;第二空:,设,前项和为,则,,两式相减得,则,又,则.故答案为:;.16、15【解析】易得抛物线方程为,根据,求得点P的坐标,进而得到直线l的方程,与抛物线方程联立,再利用抛物线定义求解.【详解】解:因为抛物线的焦点到准线的距离为4,所以,则抛物线:,设点的坐标为,的坐标为,因为,所以,则,则,所以直线的方程为,代入抛物线方程可得,故,则,所以故答案为:15三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)求出函数的导数,利用切线平行求出a,即可求出切线方程;(2)先把已知条件转化为,令,,利用导数求出的最小值,即可求出实数a的取值范围.【详解】(1),故,而,故,故,解得:,故,故的切线方程是:,即;(2)当时,恒成立等价于,令,.则,令,解得:;令,解得:;所以在上单减,在上单增,所以,所以.即实数a的取值范围为.18、(1)(2)(3)【解析】(1)先表示出边、所在直线的斜率,然后根据两条直线的斜率关系建立方程即可;(2)联立直线与椭圆方程,利用韦达定理和中点坐标公式即可求出直线的斜率;(3)先表示出,然后利用椭圆的性质,进而确定的最大值.【小问1详解】设点,则由可得:化简得:故顶点的轨迹的方程:【小问2详解】当直线的斜率不存在时,显然不符合题意;当直线的斜率存在时,设直线的方程为联立方程组消去可得:设直线与轨迹的交点,的坐标分别为由韦达定理得:点为、两点的中点,可得:,即则有:解得:故求直线的方程为:【小问3详解】由(1)可知,设则有:又点满足,即由椭圆的性质得:所以当时,19、(1)证明见解析;(2)【解析】(1)易得,再由勾股定理逆定理证明,即可得线面垂直;(2)根据(1)得,进而根据几何关系,利用等体积法求解即可.【详解】解:(1)连接,∵,是中点,∴,,又,,∴,∴,∵,∴,∴,,平面,∴平面;(2)∵点在棱上,且,,为的中点.∴,∴由余弦定理得,即,∴,由(1)平面,设点到平面的距离为∴,即,解得:所以点到平面的距离为.20、(1);(2)【解析】(1)首先由椭圆的一个顶点可以求出的值,再根据离心率可得到、的关系,联立即可求得的值,进而得到椭圆的方程;(2)先联立直线与椭圆,结合韦达定理得到线段的中点的坐标,再根据,即可求得的值,进而求得直线的方程【详解】(1)由一个顶点为,离心率,可得,,,解得,,即有椭圆方程为(2)由知点在线段的垂直平分线上,由,消去得,由,得方程的,即方程有两个不相等的实数根设、,线段的中点,则,所以,所以,即,因为,所以直线的斜率为,由,得,所以,解得:,即有直线的方程为21、(1);(2)最大值为,最小值为【解析】(1)求出导函数,由即可解得;(2)求出函数的单调区间,进而可以求出函数的最值.【详解】解:(1)由题意,可得,得.(2),令,得或(舍去
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 手术室轮班制度规范
- 轮滑场安全制度规范
- 小学报餐制度规范
- 茶桌摆放制度规范
- 计量秤校验制度规范
- 打样流程规范制度
- 布置专用室制度规范
- 科研论文规范制度
- 预警通告制度规范要求
- 袜厂规范制度
- 2025年事业单位笔试-贵州-贵州财务(医疗招聘)历年参考题库含答案解析(5卷套题【单项选择100题】)
- 二年级数学上册100道口算题大全(每日一练共12份)
- 空压机精益设备管理制度
- 国家开放大学《公共政策概论》形考任务1-4答案
- 药品经营与管理专业职业生涯规划书1400字数
- 正循环成孔钻孔灌注桩施工方案
- 苍南分孙协议书
- 2025-2030中国电动警用摩托车和应急摩托车行业市场现状供需分析及投资评估规划分析研究报告
- 农机安全操作培训课件
- 企业所得税纳税申报表(2024年修订)填报要点及相关政策分析
- 医学类单招入学考试题库及答案(修正版)
评论
0/150
提交评论