版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省徐州市睢宁高级中学南校2026届高一数学第一学期期末检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列命题为真命题的是()A.若,则 B.若,则C.若,则 D.若,则2.若且则的值是.A. B.C. D.3.已知幂函数的图象过点(4,2),则()A.2 B.4C.2或-2 D.4或-44.已知函数f(x)=loga(x+1)(其中a>1),则f(x)<0的解集为()A. B.C. D.5.若实数,满足,则的最小值是()A.18 B.9C.6 D.26.下列函数中,满足对定义域内任意实数,恒有的函数的个数为()①②③④A.1个 B.2个C.3个 D.4个7.若函数分别是上的奇函数、偶函数,且满足,则有()A. B.C. D.8.以下给出的是计算的值的一个程序框图,其中判断框内应填入的条件是A.B.C.D.9.已知某棱锥的三视图如图所示,则该棱锥的表面积为A. B.C. D.10.从含有两件正品和一件次品的3件产品中每次任取1件,每次取出后放回,连续取两次,则取出的两件产品中恰有一件是次品的概率为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知点P(tanα,cosα)在第三象限,则角α的终边在第________象限12.已知集合,,则________________.(结果用区间表示)13.已知幂函数过点,若,则________14.如下图所示的正四棱台的上底面边长为2,下底面边长为8,高为3215.若()与()互为相反数,则的最小值为______.16.在中,角、、所对的边为、、,若,,,则角________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知奇函数(a为常数)(1)求a的值;(2)若函数有2个零点,求实数k的取值范围;18.如图,三棱台DEFABC中,AB=2DE,G,H分别为AC,BC的中点(1)求证:平面ABED∥平面FGH;(2)若CF⊥BC,AB⊥BC,求证:平面BCD⊥平面EGH.19.(1)已知,求的最小值;(2)求函数的定义域20.为适应市场需求,某公司决定从甲、乙两种类型工业设备中选择一种进行投资生产,根据公司自身生产经营能力和市场调研,得出生产经营这两种工业设备的有关数据如下表:类别年固定成本每台产品原料费每台产品售价年最多可生产甲设备100万元m万元50万元200台乙设备200万元40万元90万元120台假定生产经营活动满足下列条件:①年固定成本与年生产的设备台数无关;②m为待定常数,其值由生产甲种设备的原料价格决定,且m∈[30,40];③生产甲种设备不需要支付环保、专利等其它费用,而生产x台乙种设备还需支付环保,专利等其它费用0.25x2万元;④生产出来的设备都能在当年全部销售出去(Ⅰ)若该公司选择投资生产甲设备,则至少需要年生产a台设备,才能保证对任意m∈[30,40],公司投资生产都不会赔本,求a的值;(Ⅱ)公司要获得最大年利润,应该从甲、乙两种工业设备中选择哪种设备投资生产?请你为该公司作出投资选择和生产安排21.已知函数(1)判断f(x)的奇偶性,并说明理由;(2)用定义证明f(x)在(1,+∞)上单调递增;(3)求f(x)在[-2,-1]上的值域
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】当时,不正确;当时,不正确;正确;当时,不正确.【详解】对于,当时,不成立,不正确;对于,当时,不成立,不正确;对于,若,则,正确;对于,当时,不成立,不正确.故选:C.【点睛】关键点点睛:利用不等式的性质求解是解题关键.2、C【解析】由题设,又,则,所以,,应选答案C点睛:角变换是三角变换中的精髓,也是等价化归与转化数学思想的具体运用,求解本题的关键是巧妙地将一个角变为已知两角的差,再运用三角变换公式进行求解.3、B【解析】设幂函数代入已知点可得选项.【详解】设幂函数又函数过点(4,2),,故选:B.4、D【解析】因为已知a的取值范围,直接根据根据对数函数的单调性和定点解出不等式即可【详解】因为,所以在单调递增,所以所以,解得故选D【点睛】在比较大小或解不等式时,灵活运用函数的单调性以及常数和对指数之间的转化5、C【解析】,利用基本不等式注意等号成立条件,求最小值即可【详解】∵,,∴当且仅当,即,时取等号∴的最小值为6故选:C【点睛】本题考查了利用基本不等式求和的最小值,注意应用基本不等式的前提条件:“一正二定三相等”6、A【解析】根据因为函数满足对定义域内任意实数,恒有,可得函数的图象是“下凸”,然后由函数图象判断.【详解】因为函数满足对定义域内任意实数,恒有,所以函数的图象是“下凸”,分别作出函数①②③④的图象,由图象知,满足条件的函数有③一个,故选:A7、D【解析】函数分别是上的奇函数、偶函数,,由,得,,,解方程组得,代入计算比较大小可得.考点:函数奇偶性及函数求解析式8、A【解析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S的值【详解】程序运行过程中,各变量值如下表所示:第一圈:S=1,k=2,第二圈:S=1+,k=3,第三圈:S=1++,k=4,…依此类推,第十圈:S=1+,k=11退出循环其中判断框内应填入的条件是:k≤10,故选A【点睛】算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解流程图的含义而导致错误9、D【解析】根据三视图可知,几何体是一条侧棱垂直于底面的四棱锥,底面是边长为的正方形,如下图所示,该几何体的四个侧面均为直角三角形,侧面积,底面积,所以该几何体的表面积为,故选D.考点:三视图与表面积.【易错点睛】本题考查三视图与表面积,首先应根据三视图还原几何体,需要一定的空间想象能力,另外解本题时,也可以将几何体置于正方体中,这样便于理解、观察和计算.根据三视图求表面积一定要弄清点、线、面的平行和垂直关系,能根据三视图中的数据找出直观图中的数据,从而进行求解,考查学生空间想象能力和计算能力.10、B【解析】根据独立重复试验的概率计算公式,准确计算,即可求解.【详解】由题意,该抽样是有放回的抽样,所以每次抽到正品的概率是,抽到次品的概率是,所以取出的两件产品中恰有一件是次品的概率为.故选:B.二、填空题:本大题共6小题,每小题5分,共30分。11、二【解析】由点P(tanα,cosα)在第三象限,得到tanα<0,cosα<0,从而得到α所在的象限【详解】因为点P(tanα,cosα)在第三象限,所以tanα<0,cosα<0,则角α的终边在第二象限,故答案为二点评:本题考查第三象限内的点的坐标的符号,以及三角函数在各个象限内的符号12、【解析】先求出集合A,B,再根据交集的定义即可求出.【详解】,,.故答案为:.13、##【解析】先由已知条件求出的值,再由可求出的值【详解】因幂函数过点,所以,得,所以,因为,所以,得,故答案为:14、6【解析】如下图所示,O'B'=2,OM=215、2【解析】有题设得到,利用基本不等式求得最小值.【详解】由题知,,则,,则,当且仅当时等号成立,故答案为:216、.【解析】利用余弦定理求出的值,结合角的取值范围得出角的值.【详解】由余弦定理得,,,故答案为.【点睛】本题考查余弦定理的应用和反三角函数,解题时要充分结合元素类型选择正弦定理和余弦定理解三角形,考查计算能力,属于中等题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由奇函数中求解即可;(2)函数有2个零点,可转为为也即函数与的图象有两个交点,结合图象即可求解【小问1详解】由是上的奇函数,可得,所以,解得,经检验满足奇函数,所以;【小问2详解】函数有2个零点,可得方程函数有2个根,即有2个零点,也即函数与的图象有两个交点,由图象可知所以实数得取值范围是18、(1)见解析(2)见解析【解析】解析:(1)在三棱台DEFABC中,BC=2EF,H为BC的中点,BH∥EF,BH=EF,四边形BHFE为平行四边形,有BE∥HF.BE∥平面FGH在△ABC中,G为AC的中点,H为BC的中点,GH∥AB.AB∥平面FGH又AB∩BE=B,所以平面ABED∥平面FGH.(2)连接HE,EGG,H分别为AC,BC的中点,GH∥AB.AB⊥BC,GH⊥BC.又H为BC的中点,EF∥HC,EF=HC,四边形EFCH是平行四边形,有CF∥HE.CF⊥BC,HE⊥BC.HE,GH⊂平面EGH,HE∩GH=H,BC⊥平面EGH.BC⊂平面BCD,平面BCD⊥平面EGH.19、(1)3;(2)或【解析】(1)由,利用基本不等式即可求解.(2)由题意可得,解一元二次不等式即可求解.【详解】解:(1),,,当且仅当,即时取等号,的最小值为3;(2)由题知,令,解得或∴函数定义域为或20、(Ⅰ)10(Ⅱ)详见解析【解析】(Ⅰ)由年销售量为a台,按利润的计算公式求得利润,再由利润大于等于0,分离参数a求解;(Ⅱ)分别写出投资生产甲、乙两种工业设备的利润函数,由函数的单调性及二次函数的性质求函数的最大值,然后作出比较得答案【详解】(Ⅰ)由年销售a台甲设备,公司年获利y1=50a-100-am,由y1=50a-100-am≥0(30≤m≤40),得a≥(30≤m≤40),函数f(m)=在[30,40]上为增函数,则f(m)max=10,∴a≥10则对任意m∈[30,40],公司投资生产都不会赔本,a的值为10台;(Ⅱ)由年销售量为x台,按利润的计算公式,有生产甲、乙两设备的年利润y1,y2分别为:y1=50x-(100+mx)=(50-m)x-100,0≤x≤200且x∈Ny2=90x-(200+40x)-0.25x2=-0.25x2+50x-200=-0.25(x-100)2+2300,0≤x≤120,x∈N∵30≤m≤40,∴50-m>0,∴y1=(50-m)x-100为增函数,又∵0≤x≤200,x∈N,∴x=200时,生产甲设备的最大年利润为(50-m)×200-100=9900-200m(万元)又y2=-0.25(x-100)2+2300,0≤x≤120,x∈N∴x=100时,生产乙设备的最大年利润为2300(万元)(y1)max-(y2)max=(9900-200m)-2300=7600-200m当30≤m<38时,7600-200m>0,当m=38时,7600-200m=0,当38<m<40时,7600-200m<0,故当30≤m<38时,投资生产甲设备200台可获最大年利润;当m=38时,生产甲设备与生产乙设备均可获得最大年利润;当38<m<40时,投资生产乙设备100台可获最大年利润【点睛】考查根据实际问题抽象函数模型的能力,并能根据模型的解决,指导实际生活中的决策问题,属中档题21、(1)f(x)为奇函
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 妊娠期合并肾脏疾病管理策略
- 材料结构分析试题及答案
- 妊娠不同时期阑尾炎的诊疗策略差异
- 头颈癌干细胞耐药的免疫逃逸策略-1
- 地图学考试及答案
- 库房考试试题及答案
- 2025年大学建筑设计(结构设计基础)试题及答案
- 2026年空气净化器维修(净化效率调试)试题及答案
- 2025年高职供应链管理(供应链管理基础)试题及答案
- 2025年高职绘画(油画创作)试题及答案
- 第14课 算法对生活的影响 课件 2025-2026学年六年级上册信息技术浙教版
- 食品检验检测技术专业介绍
- 2025年事业单位笔试-贵州-贵州财务(医疗招聘)历年参考题库含答案解析(5卷套题【单项选择100题】)
- 二年级数学上册100道口算题大全(每日一练共12份)
- 空压机精益设备管理制度
- 国家开放大学《公共政策概论》形考任务1-4答案
- 药品经营与管理专业职业生涯规划书1400字数
- 正循环成孔钻孔灌注桩施工方案
- 苍南分孙协议书
- 2025-2030中国电动警用摩托车和应急摩托车行业市场现状供需分析及投资评估规划分析研究报告
- 农机安全操作培训课件
评论
0/150
提交评论