江苏省盐城市示范名校2026届高二上数学期末统考模拟试题含解析_第1页
江苏省盐城市示范名校2026届高二上数学期末统考模拟试题含解析_第2页
江苏省盐城市示范名校2026届高二上数学期末统考模拟试题含解析_第3页
江苏省盐城市示范名校2026届高二上数学期末统考模拟试题含解析_第4页
江苏省盐城市示范名校2026届高二上数学期末统考模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省盐城市示范名校2026届高二上数学期末统考模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,是椭圆的两焦点,是椭圆上任一点,从引外角平分线的垂线,垂足为,则点的轨迹为()A.圆 B.两个圆C.椭圆 D.两个椭圆2.椭圆的一个焦点坐标为,则()A.2 B.3C.4 D.83.已知空间四边形中,,,,点在上,且,为中点,则等于()A. B.C. D.4.已知点A、是抛物线:上的两点,且线段过抛物线的焦点,若的中点到轴的距离为3,则()A.3 B.4C.6 D.85.若函数既有极大值又有极小值,则实数a的取值范围是()A. B.C. D.6.已知等比数列的前n项和为,且,则()A.20 B.30C.40 D.507.已知,若,则()A. B.C. D.8.已知数列的前n项和为,,,则()A. B.C. D.9.求点关于x轴的对称点的坐标为()A. B.C. D.10.已知数列满足,在任意相邻两项与(k=1,2,…)之间插入个2,使它们和原数列的项构成一个新的数列.记为数列的前n项和,则的值为()A.162 B.163C.164 D.16511.“”是“”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.即不充分也不必要条件12.抛物线的焦点到准线的距离是A.2 B.4C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知数列满足,则其通项公式_______14.经过点,的直线的倾斜角为___________.15.已知,,则以AB为直径的圆的方程为___________.16.某甲、乙两人练习跳绳,每人练习10组,每组不间断跳绳计数的茎叶图如图,则下面结论中所有正确的序号是___________.①甲比乙的极差大;②乙的中位数是18;③甲的平均数比乙的大;④乙的众数是21.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆长轴长为4,A,B分别为左、右顶点,P为椭圆上不同于A,B的动点,且点在椭圆上,其中e为椭圆的离心率(1)求椭圆的标准方程;(2)直线AP与直线(m为常数)交于点Q,①当时,设直线OQ的斜率为,直线BP的斜率为.求证:为定值;②过Q与PB垂直的直线l是否过定点?如果是,请求出定点坐标;如果不是,请说明理由18.(12分)如图,在三棱锥中,平面平面,且,(1)求证:;(2)求直线与所成角的余弦值19.(12分)如图,在平面直角坐标系上,已知圆的直径,定直线到圆心的距离为,且直线垂直于直线,点是圆上异于、的任意一点,直线、分别交与、两点(1)求过点且与圆相切的直线方程;(2)若,求以为直径的圆方程;(3)当点变化时,以为直径的圆是否过圆内的一定点,若过定点,请求出定点;若不过定点,请说明理由20.(12分)在①;②;③;这三个条件中任选一个,补充在下面的问题中,然后解答补充完整的题.注:若选择多个条件分别解答,则按第一个解答计分.已知,且(只需填序号).(1)求的值;(2)求展开式中的奇数次幂的项的系数之和21.(12分)正四棱柱的底面边长为2,侧棱长为4.E为棱上的动点,F为棱的中点.(1)证明:;(2)若E为棱上的中点,求直线BE到平面的距离.22.(10分)已知抛物线C:y2=2px(p>0)的焦点与椭圆M:=1的右焦点重合.(1)求抛物线C的方程;(2)直线y=x+m与抛物线C交于A,B两点,O为坐标原点,当m为何值时,=0.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】设的延长线交的延长线于点,由椭圆性质推导出,由题意知是△的中位线,从而得到点的轨迹是以为圆心,以为半径的圆【详解】是焦点为、的椭圆上一点为的外角平分线,,设的延长线交的延长线于点,如图,,,,由题意知是△的中位线,,点的轨迹是以为圆心,以为半径的圆故选:A2、D【解析】由条件可得,,,,由关系可求值.【详解】∵椭圆方程为:,∴,∴,,∵椭圆的一个焦点坐标为,∴,又,∴,∴,故选:D.3、B【解析】利用空间向量运算求得正确答案.【详解】.故选:B4、D【解析】直接根据抛物线焦点弦长公式以及中点坐标公式求结果【详解】设,,则的中点到轴的距离为,则故选:D5、B【解析】函数既有极大值又有极小值转化为导函数在定义域上有两个不同的零点.【详解】因为既有极大值又有极小值,且,所以有两个不等的正实数解,所以,且,解得,且.故选:B.6、B【解析】利用等比数列的前n项和公式即可求解.【详解】设等比数列的首项为,公比为,则,由得,即,解得或(舍),且代入①得,则,所以.故选:B.7、B【解析】先求出的坐标,然后由可得,再根据向量数量积的坐标运算求解即可.【详解】因为,,所以,因为,所以,即,解得.故选:B8、D【解析】根据给定递推公式求出即可计算作答.【详解】因数列的前n项和为,,,则,,,所以.故选:D9、D【解析】根据点关于坐标轴的对称点特征,直接写出即可.【详解】A点关于x轴对称点,横坐标不变,纵坐标与竖坐标为原坐标的相反数,故点的坐标为,故选:D10、C【解析】确定数列的前70项含有的前6项和64个2,从而求出前70项和.【详解】,其中之间插入2个2,之间插入4个2,之间插入8个2,之间插入16个2,之间插入32个2,之间插入64个2,由于,,故数列的前70项含有的前6项和64个2,故故选:C11、D【解析】根据充分条件、必要条件的判定方法,结合不等式的性质,即可求解.【详解】由,可得,即,当时,,但的符号不确定,所以充分性不成立;反之当时,也不一定成立,所以必要性不成立,所以是的即不充分也不必要条件.故选:D.12、D【解析】因为抛物线方程可化为,所以抛物线的焦点到准线的距离是,故选D.考点:1、抛物线的标准方程;2、抛物线的几何性质.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】构造法可得,由等比数列的定义写出的通项公式,进而可得.【详解】令,则,又,∴,故,而,∴是公比为,首项为,则,∴.故答案为:.14、【解析】根据两点间斜率公式得到斜率,再根据斜率确定倾斜角大小即可.【详解】根据两点间斜率公式得:,所以直线的倾斜角为:.故答案为:15、【解析】求圆心及半径即可.【详解】由已知可得圆心坐标为,半径为,所以圆的方程为:.故答案为:16、①③④【解析】根据茎叶图提供的数据求出相应的极差、中位数、均值、众数再判断【详解】由茎叶图,甲的极差是37-8=29,乙的极差是23-9=14,甲极差大,①正确;乙中位数是,②错;甲平均数是:,乙的平均数为:16.9,③正确;乙的众数是21,④正确故答案为:①③④三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)①证明见解析;②直线过定点;【解析】(1)依题意得到方程组,解得,即可求出椭圆方程;(2)①由(1)可得,,设,,表示出直线的方程,即可求出点坐标,从而得到、,即可求出;②在直线方程中令,即可得到的坐标,再求出直线的斜率,即可得到直线的方程,从而求出定点坐标;【小问1详解】解:依题意可得,即,解得或(舍去),所以,所以椭圆方程为【小问2详解】解:①由(1)可得,,设,,则直线的方程为,令则,所以,,所以,又点在椭圆上,所以,即,所以,即为定值;②因为直线的方程为,令则,因为,所以,所以直线的方程为,即又,所以,令,解得,所以直线过定点;18、(1)证明见解析;(2).【解析】(1)过点作交的延长线于点,连接,由,,证出平面,即可证出.(2)以为原点,的方向分别为轴正方向,建立空间直角坐标系,写出相应点的坐标,利用,即可得到答案.【小问1详解】过点作交的延长线于点,连接,因为,所以,又因为,所以,所以,即,.因为,所以平面,因为平面,所以【小问2详解】因为平面平面,平面平面,所以平面,以为原点,的方向分别为轴正方向,建立如图所示的空间直角坐标系,则,可得,因为,所以直线与所成角的余弦值为19、(1)或(2)(3)过定点,定点坐标为【解析】(1)对所求直线的斜率是否存在进行分类讨论,在所求直线斜率不存在时,直接验证直线与圆相切;在所求直线斜率存在时,设所求直线方程为,利用点到直线的距离公式可得出关于的等式,求出的值,综合可得出所求直线的方程;(2)分点在轴上方、点在轴下方两种情况讨论,求出点、的坐标,可得出所求圆的圆心坐标和半径,即可得出所求圆的方程;(3)设直线的方程为,其中,求出点、的坐标,可求得以线段为直径的圆的方程,并化简圆的方程,可求得定点的坐标.【小问1详解】解:易知圆的方程为,圆心为原点,半径为,若所求直线的斜率不存在,则所求直线的方程为,此时直线与圆相切,合乎题意,若所求直线的斜率存在,设所求直线的方程为,即,由已知可得,解得,此时所求直线的方程为.综上所述,过点且与圆相切的直线方程为或.【小问2详解】解:易知直线的方程为,、,若点在轴上方,则直线的方程为,在直线的方程中,令,可得,即点,直线的方程为,在直线的方程中,令,可得,即点,线段的中点为,且,此时,所求圆的方程为;若点在轴下方,同理可求得所求圆的方程为.综上所述,以为直径的圆方程为.【小问3详解】解:不妨设直线的方程为,其中,在直线的方程中,令,可得,即点,因为,则直线的方程为,在直线的方程中,令,可得,即点,线段中点为,,所以,以线段为直径的圆的方程为,即,由,解得,因此,当点变化时,以为直径的圆是否过圆内的定点.20、(1)选①②③,答案均为;(2)66【解析】(1)选①时,利用二项式定理求得的通项公式为,从而得到,求出n的值;选②时,利用二项式系数和的公式求出,解出n的值;选③时,利用赋值法求解,,从而求出n的值;(2)在第一问求出的的前提下进行赋值法求解.【小问1详解】选①,其中,而的通项公式为,当时,,所以,解得:;选②,由于,所以,解得:;选③,令中得:,再令得:,解得:;【小问2详解】由(1)知:n=7,所以,令得:,令得:,两式相减得:,所以,故展开式中的奇数次幂的项的系数和为66.21、(1)证明见解析;(2).【解析】(1)根据给定条件建立空间直角坐标系,利用空间位置关系的向量证明计算作答.(2)利用(1)中坐标系,证明平面,再求点B到平面的距离即可作答.【小问1详解】在正四棱柱中,以点D为原点,射线分别为x,y,z轴非负半轴建立空间直角坐标系,如图,则,因E为棱上的动点,则设,,而,,即,所以.【小问2详解】由(1)知,点,,,,设平面的一个法向量,则,令,得,显然有,则,而平面,因此,平面,于是有直线BE到平面的距离等于点B到平面的距离,所以直线BE到平面的距离是.22、(1)y2=4x(2)m=﹣4或m=0【解析】(1)由椭圆的右焦点得出的值,进而得出抛物线C的方程;(2)联立直线和抛物线方程,利用韦达定理结合数量积公式证明即可【小问1详解】由题意,椭圆=1的右焦点为(1,0),抛物线y2=2px的焦点为(,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论