版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届湖南省邵阳市邵东县第三中数学高一上期末联考试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设函数则A.1 B.4C.5 D.92.已知函数,将图象向右平移个单位长度得到函数的图象,若对任意,都有成立,则的值为A. B.1C. D.23.设全集为,集合,,则()A. B.C. D.4.已知为所在平面内一点,,则()A. B.C. D.5.已知扇形的弧长是,面积是,则扇形的圆心角的弧度数是()A. B.C. D.或6.设,满足约束条件,且目标函数仅在点处取得最大值,则原点到直线的距离的取值范围是()A. B.C. D.7.在中,“”是“”的()A.充要条件 B.充分非必要条件C必要非充分条件 D.既非充分又非必要条件8.圆与圆的位置关系是()A.外切 B.内切C.相交 D.外离9.明朝数学家程大位在他的著作《算法统宗》中写了一首计算秋千绳索长度的词《西江月》:“平地秋千未起,踏板一尺离地,送行两步恰竿齐,五尺板高离地……”某教师根据这首词设计一题:如图,已知,,则弧的长()A. B.C. D.10.已知锐角终边上一点A的坐标为,则的弧度数为()A.3 B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数f(x)=1g(2x-1)的定义城为______12.若,,则以、为根的一元二次方程可以是___________.(写出满足条件的一个一元二次方程即可)13.已知,则_________.14.在ABC中,H为BC上异于B,C的任一点,M为AH的中点,若,则λ+μ=_________15.若圆锥的侧面展开图是圆心角为的扇形,则该圆锥的侧面积与底面积之比为___________.16.已知,且,则=_______________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.若向量的最大值为(1)求的值及图像的对称中心;(2)若不等式在上恒成立,求的取值范围18.在中,角的对边分别为,的面积为,已知,,(1)求值;(2)判断的形状并求△的面积19.如图,平行四边形中,,分别是,的中点,为与的交点,若,,试以,为基底表示、、20.如图,三棱柱中,侧棱垂直底面,,,点是棱的中点(1)证明:平面平面;(2)求三棱锥的体积21.已知函数的图象相邻两条对称轴之间的距离为.(1)当时,求函数的最大值和最小值;(2)将函数的图象向左平移个单位后得到函数的图象,若为偶函数,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】根据题意,由函数的解析式求出与的值,相加即可得答案【详解】根据题意,函数,则,又由,则,则;故选C【点睛】本题考查对数的运算,及函数求值问题,其中解答中熟记对数的运算,以及合理利用分段函数的解析式求解是解答的关键,着重考查了推理与计算能力,属于基础题2、D【解析】利用辅助角公式化简的解析式,再利用正弦型函数的图象变换规律,正弦函数的图象的对称性,求得的值【详解】,(其中,),将图象向右平移个单位长度得到函数的图象,得到,∴,,解得,故选D.3、B【解析】先求出集合B的补集,再根据集合的交集运算求得答案.【详解】因为,所以,故,故选:B.4、A【解析】根据平面向量的线性运算及平面向量基本定理即可得出答案.【详解】解:因为为所在平面内一点,,所以.故选:A5、C【解析】根据扇形面积公式,求出扇形的半径,再由弧长公式,即可求出结论.【详解】因为扇形的弧长为4,面积为2,设扇形的半径为,则,解得,则扇形的圆心角的弧度数为.故选:C.【点睛】本题考查扇形面积和弧长公式应用,属于基础题.6、B【解析】作出可行域,由目标函数仅在点取最大值,分,,三种情况分类讨论,能求出实数的取值范围.然后求解到直线的距离的表达式,求解最值即可详解】解:由约束条件作出可行域,如右图可行域,目标函数仅在点取最大值,当时,仅在上取最大值,不成立;当时,目标函数的斜率,目标函数在取不到最大值当时,目标函数的斜率,小于直线的斜率,综上,原点到直线的距离则原点到直线的距离的取值范围是:故选B【点睛】本题考查实数的取值范围的求法,是中档题,解题时要认真审题,注意线性规划知识的合理运用.7、A【解析】结合三角形内角与充分、必要条件的知识确定正确选项.【详解】在中,,所以,所以在中,“”是“”的充要条件.故选:A8、C【解析】圆心为和,半径为和,圆心距离为,由于,故两圆相交.9、C【解析】求出长后可得,再由弧长公式计算可得【详解】由题意,解得,所以,,所以弧的长为故选:C10、C【解析】先根据定义得正切值,再根据诱导公式求解【详解】由题意得,选C.【点睛】本题考查三角函数定义以及诱导公式,考查基本分析化简能力,属基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据对数函数定义得2x﹣1>0,求出解集即可.【详解】∵f(x)=lg(2x﹣1),根据对数函数定义得2x﹣1>0,解得:x>0,故答案为(0,+∞).【点睛】考查具体函数的定义域的求解,考查了指数不等式的解法,属于基础题12、【解析】利用两数和的完全平方公式得到,再利用根与系数的关系写出一个满足条件的方程.【详解】因为,,所以,即该一元二次方程的两根之和为3,两根之积为2,所以以、为根的一元二次方程可以是.13、【解析】由题意可得:点睛:熟记同角三角函数关系式及诱导公式,特别是要注意公式中的符号问题;注意公式的变形应用,如sin2α=1-cos2α,cos2α=1-sin2α,1=sin2α+cos2α及sinα=tanα·cosα等.这是解题中常用到的变形,也是解决问题时简化解题过程的关键所在14、##0.5【解析】根据题意,用表示出与,求出λ、μ的值即可【详解】设,则=(1﹣k)+k=,∴故答案为:15、【解析】设圆锥的底面半径为r,母线长为l,根据圆锥的侧面展开图是圆心角为的扇形,有,即,然后分别求得侧面积和底面积即可.【详解】设圆锥的底面半径为r,母线长为l,由题意得:,即,所以其侧面积是,底面积是,所以该圆锥的侧面积与底面积之比为故答案为:16、【解析】由同角三角函数关系求出,最后利用求解即可.【详解】由,且得则,则.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)先利用向量的数量积公式和倍角公式对函数式进行化简,再利用两倍角公式以及两角差的正弦公式进行整理,然后根据最大值为解出的值,最后根据正弦函数的性质求得函数的对称中心;(2)首先通过的取值范围来确定函数的范围,再根据不等式在上恒成立,推断出,最后计算得出结果【详解】因为的最大值为,所以,由得所以的对称中心为;(2)因为,所以即,因为不等式在上恒成立,所以即解得,的取值范围为【点睛】本题考查了向量的相关性质以及三角函数相关性质,主要考查了向量的乘法、三角函数的对称性、三角恒等变换、三角函数的值域等,属于中档题.的对称中心为18、(1);(2)是等腰三角形,其面积为【解析】(1)由结合正弦面积公式及余弦定理得到,进而得到结果;(2)由结合内角和定理可得分两类讨论即可.试题解析:(1),由余弦定理得,(2)即或(ⅰ)当时,由第(1)问知,是等腰三角形,(ⅱ)当时,由第(1)问知,又,矛盾,舍.综上是等腰三角形,其面积为点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中已知和所求,在图形中标出来,然后确定转化的方向.第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化.第三步:求结果.19、【解析】分析:直接利用共线向量的性质、向量加法与减法的三角形法则求解即可.详解:由题意,如图,,连接,则是的重心,连接交于点,则是的中点,∴点在上,∴,故答案为;;∴点睛:向量的运算有两种方法,一是几何运算往往结合平面几何知识和三角函数知识解答,运算法则是:(1)平行四边形法则(平行四边形的对角线分别是两向量的和与差);(2)三角形法则(两箭头间向量是差,箭头与箭尾间向量是和);二是坐标运算:建立坐标系转化为解析几何问题解答(求最值与范围问题,往往利用坐标运算比较简单)20、(1)证明见解析;(2)【解析】(1)由题意得,,即可得到平面,从而得到⊥,再根据,得到,证得平面,即可得证;(2)首先求出,利用勾股定理求出,即可求出,再根据锥体的体积公式计算可得【详解】解:(1)证明:由题设知,,,平面,所以平面,又因为平面,所以因为,所以,即因为,平面,所以平面,又因为平面,所以平面平面(2)由,得,所以,所以,所以的面积,所以21、(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年环境净化催化材料项目可行性研究报告
- 2025年大学会计学(会计学)试题及答案
- 多症状群的综合管理策略
- 2025年大学人文地理学(城市地理研究)试题及答案
- 2025年高职饲草生产技术(苜蓿种植管理)试题及答案
- 2025年中职供热通风与空调工程技术(空调工程实务)试题及答案
- 2025年大学智能产品设计(应用技巧)试题及答案
- 2025年中职(现代农业技术)精准农业专业技能测试试题及答案
- 2025年中职游戏设计(游戏理论)试题及答案
- 多病共患者自我管理优先级排序
- 2025年白山辅警招聘考试题库及答案1套
- 2026中央纪委国家监委机关直属单位招聘24人考试笔试模拟试题及答案解析
- 特种设备外借协议书
- 2026年内蒙古化工职业学院单招职业适应性考试必刷测试卷附答案解析
- 三元股份财务风险控制研究
- GB 46750-2025民用无人驾驶航空器系统运行识别规范
- 湖南省长沙市雅礼教育集团2024-2025学年七年级(下)期末数学试卷
- 电力绝缘胶带施工方案
- 医院2024年度内部控制风险评估报告
- DB63-T 2256.3-2025 水利信息化工程施工质量评定规范 第3部分 水情监测系统
- 患者身份识别错误应急预案与处理流程
评论
0/150
提交评论