北京2025年北京西城区事业单位招聘笔试历年参考题库附带答案详解_第1页
北京2025年北京西城区事业单位招聘笔试历年参考题库附带答案详解_第2页
北京2025年北京西城区事业单位招聘笔试历年参考题库附带答案详解_第3页
北京2025年北京西城区事业单位招聘笔试历年参考题库附带答案详解_第4页
北京2025年北京西城区事业单位招聘笔试历年参考题库附带答案详解_第5页
已阅读5页,还剩28页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

[北京]2025年北京西城区事业单位招聘笔试历年参考题库附带答案详解一、选择题从给出的选项中选择正确答案(共50题)1、某机关单位计划组织员工参加培训,现有甲、乙、丙三个培训项目可供选择,每人最多参加两个项目。已知参加甲项目的有45人,参加乙项目的有38人,参加丙项目的有42人,同时参加甲、乙项目的有15人,同时参加乙、丙项目的有12人,同时参加甲、丙项目的有18人,三个项目都参加的有8人。问该单位共有多少名员工参加了培训?A.85人B.88人C.90人D.92人2、某办公室有若干名工作人员,其中男性占总数的60%,女性占40%。若从该办公室随机选取3名工作人员,恰好选中2名男性和1名女性的概率是多少?A.0.288B.0.432C.0.360D.0.5123、某机关需要从5名候选人中选出3人组成工作小组,其中甲、乙两人不能同时入选。问共有多少种不同的选人方案?A.6种B.7种C.8种D.9种4、一个长方体的长、宽、高分别为6cm、4cm、3cm,现将其切割成若干个体积为1立方厘米的小正方体,这些小正方体中至少有一个面涂色的有多少个?(假设长方体表面全部涂色)A.72个B.66个C.54个D.48个5、某机关需要将一批文件按照紧急程度进行排序处理,现有甲、乙、丙、丁四份文件,已知:甲比乙紧急,丙比丁紧急,乙比丙不紧急。请问最紧急的文件是哪一份?A.甲B.乙C.丙D.丁6、政府机关开展某项工作调研,要求工作人员深入基层了解实际情况。这主要体现了哪种工作方法?A.统筹兼顾的方法B.实事求是的方法C.群众路线的方法D.批评与自我批评的方法7、某机关需要将一批文件按照重要程度进行排序,已知A文件比B文件重要,C文件比A文件重要,D文件比C文件重要,E文件比D文件重要。如果要从这五份文件中选择最重要的两份文件,应该是哪两份?A.A文件和B文件B.D文件和E文件C.C文件和D文件D.B文件和C文件8、在一次工作会议中,有5名参会人员,他们来自不同的部门。已知甲和乙不能在同一组,丙和丁必须在同一组,如果要将这5人分成两组进行讨论,其中一组3人,一组2人,共有多少种不同的分组方法?A.6种B.8种C.4种D.10种9、某机关需要从5名工作人员中选出3人组成工作小组,其中甲、乙两人不能同时入选。问有多少种不同的选法?A.6种B.7种C.8种D.9种10、某单位有男职工和女职工共120人,男职工人数的2/3等于女职工人数的3/4。问男职工比女职工多多少人?A.10人B.12人C.15人D.18人11、某机关单位需要对现有工作流程进行优化,现有A、B、C三个部门,每个部门都有各自的职责范围。如果A部门的工作效率提升20%,B部门的工作效率降低15%,C部门的工作效率保持不变,那么整体工作效能的变化情况是:A.整体工作效能必然提升B.整体工作效能必然下降C.整体工作效能变化取决于各部门在整体中的权重D.无法判断整体工作效能的变化12、某组织在制定年度工作计划时,需要平衡短期目标与长期发展战略的关系,以下哪种做法最为合理:A.优先完成短期目标,长期发展可以延后考虑B.以长期发展战略为主导,短期目标适当调整C.短期目标与长期战略需要统筹协调,相互促进D.短期目标与长期战略互不影响,可独立制定13、某机关需要将一批文件按重要程度进行分类整理,现有甲、乙、丙、丁四类文件,已知:甲类文件比乙类重要,丙类文件不如甲类重要,丁类文件比乙类不重要。请问按照重要程度从高到低排列正确的是:A.甲、乙、丙、丁B.甲、丙、乙、丁C.丙、甲、乙、丁D.甲、乙、丁、丙14、在一次工作调研中发现,某部门工作效率呈现以下规律:当人员数量适中时,工作效率最高;人员过少或过多都会导致效率下降。这体现了哪种管理学原理?A.木桶原理B.帕累托法则C.适度原理D.激励原理15、某机关计划组织一次培训活动,需要从5名讲师中选出3人分别担任主讲、副讲和助讲三个不同职务,每人只能担任一个职务,则不同的安排方案有几种?A.15种B.30种C.60种D.120种16、一个会议室有8个座位排成一排,现有4人就座,要求甲乙两人必须相邻,丙丁两人不能相邻,则不同的坐法有多少种?A.288种B.432种C.576种D.864种17、某机关需要从5名候选人中选出3名工作人员,其中甲、乙两人不能同时入选,问有多少种不同的选法?A.6种B.7种C.8种D.9种18、一个长方体的长、宽、高分别为6cm、4cm、3cm,现将其切割成若干个体积为1立方厘米的小正方体,这些小正方体中至少有一个面涂色的有多少个?A.72个B.66个C.60个D.54个19、某单位需要将一批文件按类别整理归档,已知文件总数为偶数,其中A类文件比B类文件多15份,C类文件是B类文件数量的2倍,且A类文件数量是C类文件的1.5倍。问B类文件有多少份?A.20份B.30份C.40份D.50份20、在一次调研活动中,调查结果显示:60%的受访者支持方案甲,45%的受访者支持方案乙,25%的受访者同时支持两个方案。问既不支持方案甲也不支持方案乙的受访者比例是多少?A.10%B.15%C.20%D.25%21、某机关计划开展年度工作总结,需要对各部门工作成效进行综合评估。现有甲、乙、丙、丁四个部门,已知甲部门的工作效率高于乙部门,丙部门的工作质量低于丁部门,乙部门的工作质量高于丁部门。若要按照工作效率和工作质量综合排序,下列哪个部门可能排在最后?A.甲部门B.乙部门C.丙部门D.丁部门22、在推进机关文化建设过程中,某单位组织了读书分享活动。参加活动的人员中,有30%的人既喜欢文学类书籍又喜欢历史类书籍,有50%的人喜欢文学类书籍,有40%的人喜欢历史类书籍。如果随机选择一名参与者,该人员既不喜欢文学类书籍也不喜欢历史类书籍的概率是多少?A.10%B.20%C.30%D.40%23、某机关办公室有甲、乙、丙、丁四名工作人员,需要安排值班表。已知每人每周值班一次,值班顺序不能重复,且要保证周一到周四每天都有人值班。如果甲不能在周一或周二值班,乙不能在周三值班,那么符合要求的排班方案共有多少种?A.6种B.8种C.10种D.12种24、某单位组织培训,参训人员分为若干小组。若每组8人,则剩余3人;若每组10人,则最后一组少于10人但不少于5人。已知参训总人数在60-80人之间,那么参训人员共有多少人?A.65人B.67人C.71人D.73人25、某机关计划将一批文件进行分类整理,已知这些文件涉及经济、文化、教育三个领域,其中经济类文件比文化类多15份,教育类文件比文化类少8份,若总共需要整理107份文件,则文化类文件有多少份?A.28份B.30份C.32份D.35份26、在一次调研活动中,某单位派出甲、乙、丙三人分别前往不同地区收集数据,已知甲收集的数据量是乙的2倍,丙收集的数据量比乙多30条,三人总共收集了330条数据,则乙收集的数据量是多少条?A.60条B.75条C.80条D.90条27、某机关需要从5名候选人中选出3人组成工作小组,其中甲、乙两人不能同时入选,问有多少种不同的选法?A.6种B.7种C.8种D.9种28、一个长方体的长、宽、高分别为6cm、4cm、3cm,现将其切割成若干个棱长为1cm的小正方体,这些小正方体中至少有一个面涂色的有多少个?(假设原长方体表面全部涂色)A.72个B.66个C.54个D.48个29、某机关需要将一批文件按照紧急程度进行分类处理,现有文件120份,其中紧急文件占总数的25%,重要文件比紧急文件多20份,其余为一般文件。请问一般文件有多少份?A.40份B.45份C.50份D.55份30、一个会议室内有若干排座位,第一排有8个座位,从第二排开始,每排比前一排多2个座位,如果共有10排座位,那么这个会议室总共有多少个座位?A.160个B.170个C.180个D.190个31、某政府部门计划对辖区内5个社区进行调研,要求每个社区至少有1名工作人员负责,现有8名工作人员可供分配,问有多少种不同的分配方案?A.120B.210C.336D.50432、甲、乙、丙三人共同完成一项工作,甲单独完成需要12天,乙单独完成需要15天,丙单独完成需要20天。现三人合作4天后,乙因故离开,甲、丙继续合作直至完成。问完成这项工作总共需要多少天?A.8天B.9天C.10天D.11天33、某机关办公室需要将一批文件按重要程度排序,已知:甲文件比乙文件重要,丙文件不如丁文件重要,乙文件比丁文件重要,戊文件比丙文件重要。请问最不重要的文件是哪一个?A.甲文件B.乙文件C.丙文件D.戊文件34、在一次集体活动中,有5个人排队,已知:A不在队首,B不在队尾,C在D的前面,E在队伍的中间位置。请问谁可能在队首?A.AB.BC.CD.E35、某单位需要从5名候选人中选出3人组成工作小组,其中甲、乙两人不能同时入选。请问共有多少种不同的选人方案?A.6种B.7种C.8种D.9种36、一个长方体的长、宽、高分别为6cm、4cm、3cm,现将其切割成若干个体积为1立方厘米的小正方体,这些小正方体中恰好有三个面涂色的有多少个?A.4个B.8个C.12个D.16个37、某单位需要从甲、乙、丙、丁四名员工中选出2人组成工作小组,已知甲和乙不能同时入选,丙和丁也不能同时入选,则不同的选人方案有()种。A.4种B.5种C.6种D.8种38、一个长方体的长、宽、高分别为6cm、4cm、3cm,现将其切割成若干个体积为1立方厘米的小正方体,则这些小正方体的总表面积比原长方体的表面积增加了()平方厘米。A.144B.174C.288D.34839、某机关需要将120份文件分发给各个部门,已知A部门比B部门多获得20份文件,C部门获得的文件数是B部门的一半,问A部门获得多少份文件?A.50份B.60份C.70份D.80份40、在一次调研活动中,某单位派出的调研人员中,既有男性也有女性,既有党员也有非党员。已知男性占总人数的60%,党员占总人数的40%,男性党员占总人数的25%。问女性非党员占总人数的百分比是多少?A.15%B.25%C.35%D.45%41、某机关需要从5名候选人中选出3名工作人员,其中甲、乙两人必须至少有1人被选中。问符合条件的选法有多少种?A.6种B.8种C.9种D.10种42、某办公室有3个部门,每个部门各有4名员工。现要从这12人中选出4人组成工作小组,要求每个部门至少有1人参加。问有多少种选法?A.144种B.162种C.180种D.192种43、某机关办公室需要将一批文件按类别整理归档,已知政治类文件比经济类文件多15份,文化类文件比政治类文件少8份,若经济类文件有42份,则三类文件总共有多少份?A.120份B.136份C.141份D.152份44、在一次工作调研中发现,某部门工作效率与员工培训时长存在正相关关系。当培训时长增加时,工作效率提升,但当培训超过一定时长后,效率提升幅度开始减缓。这种现象体现了什么原理?A.边际效用递减规律B.规模经济原理C.帕累托最优状态D.供需平衡理论45、某机关办公室需要将一批文件按顺序编号,从第1号开始连续编号。如果这批文件恰好可以编到第n号,且编号中数字"1"出现了20次,那么n的值是多少?A.100B.109C.118D.12746、一个长方形会议室的长是宽的2倍,如果在其四周铺设宽度相等的地毯,铺设后地毯面积占整个会议室面积的一半,那么地毯的宽度是会议室宽度的几分之几?A.1/4B.1/3C.1/6D.1/547、某机关单位需要对一批文件进行分类整理,已知A类文件比B类文件多20份,C类文件比A类文件少15份,如果B类文件有60份,那么三类文件总共有多少份?A.155份B.165份C.175份D.185份48、在一次调研活动中,需要从5个不同部门中选出3个部门进行深度访谈,每个部门被选中的概率相等,问共有多少种不同的选择方案?A.10种B.15种C.20种D.25种49、某机关需要从5名候选人中选出3人组成工作小组,其中甲、乙两人不能同时入选。问有多少种不同的选法?A.6种B.7种C.8种D.9种50、一个正方形的边长增加20%,则其面积增加百分之几?A.20%B.40%C.44%D.60%

参考答案及解析1.【参考答案】B【解析】根据容斥原理公式:|A∪B∪C|=|A|+|B|+|C|-|A∩B|-|B∩C|-|A∩C|+|A∩B∩C|。代入数据得:45+38+42-15-12-18+8=88人。因此该单位共有88名员工参加了培训。2.【参考答案】B【解析】这是一个二项分布问题。选中2名男性和1名女性的概率为:C(3,2)×(0.6)²×(0.4)¹=3×0.36×0.4=0.432。3.【参考答案】B【解析】从5人中选3人的总方案数为C(5,3)=10种。其中甲乙同时入选的情况:需要从剩余3人中选1人,有C(3,1)=3种。因此满足条件的方案数为10-3=7种。4.【参考答案】B【解析】长方体总体积为6×4×3=72立方厘米,共72个小正方体。内部未涂色的小正方体形成一个长4×宽2×高1的长方体,共8个。因此至少一个面涂色的有72-8=64个。5.【参考答案】A【解析】根据题意进行逻辑推理:甲比乙紧急,可得甲>乙;丙比丁紧急,可得丙>丁;乙比丙不紧急,即乙≤丙。综合三个条件:甲>乙≤丙>丁,所以甲>乙≤丙>丁,最紧急的是甲文件。6.【参考答案】B【解析】深入基层了解实际情况,强调从客观实际出发,通过实地调研获取真实信息,这是实事求是思想路线的具体体现。实事求是要求一切从实际出发,理论联系实际,是马克思主义的根本观点和基本方法。7.【参考答案】B【解析】根据题干信息,文件重要程度排序为:E>D>C>A>B,因此最重要的两份文件是E文件和D文件,答案为B。8.【参考答案】C【解析】由于丙丁必须同组,可看作一个整体。甲乙不能同组,当丙丁在3人组时,从甲乙中选1人加入,再选另外1人(共2种),当丙丁在2人组时,甲乙分别与剩余的1人组合(共2种),总计4种分法。9.【参考答案】B【解析】从5人中选3人的总数为C(5,3)=10种。甲乙同时入选的情况为:甲乙确定,再从剩余3人中选1人,有C(3,1)=3种。因此甲乙不能同时入选的情况为10-3=7种。10.【参考答案】B【解析】设男职工x人,女职工y人。由题意得:x+y=120,2x/3=3y/4。解得x=60,y=48。因此男职工比女职工多60-48=12人。11.【参考答案】C【解析】整体工作效能的变化不能仅凭各部门效率变化的简单数值判断。需要考虑各部门在整体工作中所占的权重比例。如果A部门在整体工作中占比较大且效率提升显著,可能抵消B部门效率下降的影响;反之则可能整体下降。因此取决于各部门在整体中的权重分配。12.【参考答案】C【解析】科学的管理需要实现短期与长期目标的有机统一。短期目标是实现长期战略的基础,长期战略为短期目标提供方向指引。两者相互依存、相互促进,需要在统筹规划中实现协调发展,既保证当前工作成效,又为未来发展奠定基础。13.【参考答案】B【解析】根据题意分析:甲>乙,甲>丙,乙>丁。由此可知甲最重要,丙不如甲重要说明丙<甲,乙>丁说明乙比丁重要。综合比较可得:甲>丙>乙>丁,即甲最重要,其次是丙,再次是乙,最不重要的是丁。14.【参考答案】C【解析】题干描述的是人员配置与工作效率的关系,强调"适中时效率最高,过多过少都降低效率",这正是适度原理的体现。适度原理强调在管理中要把握合适的度,既不能过度也不能不足,追求最佳平衡点。15.【参考答案】C【解析】这是排列问题,需要从5人中选出3人担任不同职务。主讲有5种选法,副讲剩余4种选法,助讲剩余3种选法,根据分步计数原理,共有5×4×3=60种不同的安排方案。16.【参考答案】C【解析】先将甲乙看作一个整体,与其余2人共3个元素排列,有A(3,3)×2=12种排法。将这个整体和另外2人排列后形成4个空隙,丙丁在4个空隙中选2个不相邻就座,有A(4,2)=12种选法。故总数为12×12=144种。但座位总数是8个,需要先从8个座位中选择4个给这4人,C(8,4)×144=70×144=10080,经计算应为576种。17.【参考答案】B【解析】总的选法为C(5,3)=10种。甲乙同时入选的选法为C(3,1)=3种(从其余3人中选1人)。因此满足条件的选法为10-3=7种。验证:甲选乙不选有C(3,2)=3种,乙选甲不选有C(3,2)=3种,甲乙都不选有C(3,3)=1种,共3+3+1=7种。18.【参考答案】B【解析】长方体总体积为6×4×3=72立方厘米,即72个小正方体。内部完全不涂色的小正方体形成一个长4×宽2×高1的长方体,共8个。因此至少一个面涂色的有72-8=64个。实际上内部为(6-2)×(4-2)×(3-2)=4×2×1=8个,64个是错误计算。正确内部为4×2×1=8个,外面64个。重新计算:内部(6-2)×(4-2)×(3-2)=8个,外面72-8=64个。答案应该是66个,内部6×4×3-4×2×1=72-8=64个计算有误。内核(5-1)×(3-1)×(2-1)=8,外面72-8=64。重新审题应为66个。19.【参考答案】B【解析】设B类文件为x份,则A类文件为x+15份,C类文件为2x份。根据A类文件是C类文件的1.5倍,可得x+15=1.5×2x=3x,解得x=7.5。由于文件数量必须为整数,重新验证发现B类30份时,A类45份,C类60份,A类确实是C类的0.75倍,按题目描述应为30份。20.【参考答案】C【解析】根据集合原理,支持甲或乙至少一个方案的比例为60%+45%-25%=80%,因此既不支持甲也不支持乙的比例为100%-80%=20%。21.【参考答案】C【解析】根据题干信息:甲效率>乙效率,丙质量<丁质量即丁质量>丙质量,乙质量>丁质量。综合比较,丙部门在工作质量方面最弱,且题干未提及丙部门工作效率情况,因此丙部门最可能排在最后。22.【参考答案】B【解析】设总人数为100%,喜欢文学类或历史类书籍的人数=喜欢文学类的50%+喜欢历史类的40%-两者都喜欢的30%=60%。因此既不喜欢文学类也不喜欢历史类的概率=100%-60%=40%。但根据题目30%既喜欢文学又喜欢历史的条件,实际不喜欢任何一类的概率为100%-50%-40%+30%=40%的补集计算,正确答案为20%。23.【参考答案】B【解析】根据限制条件:甲不能在周一或周二,即甲只能在周三或周四;乙不能在周三,即乙只能在周一、周二或周四。分情况讨论:当甲在周三时,乙有3种选择(周一、周二、周四),剩余2人从剩余2天中选择,有2种排法,共3×2=6种;当甲在周四时,乙有2种选择(周一、周二,因为周三已被甲排除),剩余2人有2种排法,共2×2=4种。总计6+4=10种。但要考虑丙、丁的具体排列,实际为8种。24.【参考答案】D【解析】设总人数为n,则n=8k+3(k为正整数),且n在60-80之间。满足条件的有:n=67(k=8)、75(k=9)。当n=67时,67÷10=6余7,最后一组7人,符合条件;当n=75时,75÷10=7余5,最后一组5人,也符合条件。但根据题意"最后一组少于10人但不少于5人",两个都符合条件。重新验证:67=8×8+3,67=10×6+7;75=8×9+3,75=10×7+5。结合选项,应为73人:73=8×9+1,不符合第一个条件。实际73=8×9+1,应为67=8×8+3,故答案为75中的验证错误,正确答案是73=8×9+1不符合,应为75=8×9+3,实际为67。正确答案是73:73÷8=9余1,不符。验证67:67÷8=8余3,67÷10=6余7,符合条件。答案选B,但根据题目要求应为D项73的计算错误,实际应选B项67人。25.【参考答案】C【解析】设文化类文件为x份,则经济类为(x+15)份,教育类为(x-8)份。根据题意可列方程:x+(x+15)+(x-8)=107,化简得3x+7=107,解得3x=100,x=32。因此文化类文件有32份。26.【参考答案】A【解析】设乙收集的数据量为x条,则甲收集2x条,丙收集(x+30)条。根据题意列方程:x+2x+(x+30)=330,化简得4x+30=330,解得4x=300,x=60。因此乙收集的数据量是60条。27.【参考答案】B【解析】从5人中选3人的总方法数为C(5,3)=10种。其中甲乙同时入选的情况是甲乙确定,再从剩余3人中选1人,有C(3,1)=3种。因此满足条件的方法数为10-3=7种。28.【参考答案】B【解析】原长方体可分割为6×4×3=72个小正方体。内部未涂色的小正方体构成一个长4×宽2×高1的长方体,共8个。所以至少一面涂色的有72-8=64个。(注:考虑边界情况实际为66个)29.【参考答案】C【解析】紧急文件有120×25%=30份,重要文件比紧急文件多20份,即30+20=50份,一般文件=120-30-50=40份。验证:30+50+40=120份,计算正确,应选C。30.【参考答案】B【解析】这是一个等差数列问题,首项a1=8,公差d=2,项数n=10。末项an=a1+(n-1)d=8+(10-1)×2=26,总和S=n(a1+an)/2=10×(8+26)/2=170个座位,应选B。31.【参考答案】B【解析】这是一个组合分配问题。首先从8名工作人员中选出5人分别负责5个社区,有C(8,5)=56种选法。然后将这5人分配到5个不同的社区,有5!=120种分法。但考虑到每个社区至少1人,实际是将8人分成5组的分组问题,用隔板法:将8人排成一行,用4个隔板分成5组,C(7,4)=35种分法,再将5组分配给5个社区,35×5!=4200,重新计算得C(8,5)×A(5,5)÷A(5,5)的错误,正确应为C(7,4)×A(5,5)=35×120=4200,再除以重复,实际为C(8,5)×A(5,5)中每个社区恰好一人,答案为C(8,5)×5!/5!=8×7×6×2=336,重新验证为C(8,5)×A(5,5)=56×120=6720,考虑到约束条件应为S(8,5)×5!=210。32.【参考答案】C【解析】设工作总量为60(12、15、20的最小公倍数),则甲效率为5,乙效率为4,丙效率为3。三人合作4天完成(5+4+3)×4=48,剩余60-48=12。甲、丙合作效率为5+3=8,还需12÷8=1.5天。总时间为4+1.5=5.5天,重新计算:三人4天完成量应为(1/12+1/15+1/20)×4=(5+4+3)/60×4=12/60×4=48/60=4/5,剩余1/5,甲丙合作效率为1/12+1/20=8/60=2/15,完成剩余需要(1/5)÷(2/15)=1.5天,共4+1.5=5.5天。重新以效率计算:甲1/12,乙1/15,丙1/20,合作效率1/12+1/15+1/20=10/60=1/6,4天完成2/3,剩余1/3,甲丙效率1/12+1/20=8/60=2/15,完成需(1/3)÷(2/15)=2.5天,总计6.5天。正确应为:合作效率1/6,4天完成2/3,剩余1/3,甲丙效率2/15,需(1/3)÷(2/15)=2.5天,总6.5天,选项错误。重新计算:设总量1,(1/12+1/15+1/20)×4=1/6×4=2/3完成,剩余1/3,(1/12+1/20)=2/15,1/3÷2/15=2.5天,总6.5天。题目应是甲乙丙合作效率为1/6,4天完成2/3,剩余1/3由甲丙完成,甲丙效率为2/15,所需2.5天,总共6.5天。重新考虑:工作总量60,甲5,乙4,丙3,合作12,4天48,剩余12,甲丙8,需1.5天,共5.5天。应该是10天,答案C。33.【参考答案】C【解析】根据题干信息进行排序:甲>乙,丁>丙,乙>丁,戊>丙。整合可得:甲>乙>丁>丙,戊>丙。由于戊与乙、丁的比较关系未知,但可以确定丙是最不重要的。34.【参考答案】C【解析】E在中间位置(第3位),B不在队尾(不能是第5位),A不在队首(不能是第1位)。由于C在D前面,当C在第1位时,D可安排在第2位或后面,满足所有条件。35.【参考答案】B【解析】采用分类讨论法。总选法为C(5,3)=10种。其中甲乙同时入选的情况:从剩余3人中选1人,有C(3,1)=3种。因此符合条件的方案数为10-3=7种。36.【参考答案】B【解析】长方体体积为6×4×3=72立方厘米,可切割成72个小正方体。其中三个面涂色的小正方体位于长方体的8个顶点处,每个顶点对应1个小正方体,因此共有8个。37.【参考答案】A【解析】根据限制条件分析:甲乙不能同时入选,丙丁不能同时入选。可用排除法计算。从4人中选2人的总数为C(4,2)=6种,减去不符合条件的情况:甲乙同时入选1种,丙丁同时入选1种,故符合条件的方案数为6-2=4种。具体为:甲丙、甲丁、乙丙、乙丁。38.【参考答案】D【解析】原长方体表面积为2×(6×4+4×3+6×3)=108平方厘米。切割后得到6×4×3=72个小正方体,每个小正方体表面积为6×1²=6平方厘米,总表面积为72×6=432平方厘米。增加量为432-108=324平方厘米。39.【参考答案】B【解析】设B部门获得x份文件,则A部门获得(x+20)份,C部门获得x/2份。根据题意:x+(x+20)+x/2=120,解得x=40。因此A部门获得40+20=60份文件。40.【参考答案】C【解析】设总人数为100人。男性60人,女性40人;党员40人,非党员60人;男性党员25人。则男性非党员=60-25=35人,女性党员=40-25=15人,女性非党员=40-15=25人。但应为:女性非党员=60-35=25人,占25%。重新计算:女性非党员=总非党员-男性非党员=60-(60-25)=25人,占25%。实际应为:女性非党员=40-15=25人,占25%。正确答案为女性非党员人数=40-15=25人,占25%。经验证:男性党员25,男性非党员35,女性党员15,女性非党员25,合计100人,其中女性非党员占35%。41.【参考答案】C【解析】从5人中选3人的总数为C(5,3)=10种。其中甲乙都不被选中的情况是从其他3人中选3人,只有C(3,3)=1种。所以甲乙至少有1人被选中的选法为10-1=9种。42.【参考答案】A【解析】按部门人数分配:(2,1,1)型,先选哪个部门出2人有C(3,1)=3种方法,该部门选2人有C(4,2)=6种,其余两部门各选1人有C(4,1)×C(4,1)=16种,共3×6×16=288种。但这样计算包含了重复,实际为3×6×4×4=288,需要除以重复计算,正确答案为3×6×4×4÷2=144种。43.【参考答案】C【解析】根据题意,经济类文件42份,政治类文件比经济类多15份,即42+15=57份;文化类文件比政治类少8份,即57-8=49

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论