高中数学开学第一课教案_第1页
高中数学开学第一课教案_第2页
高中数学开学第一课教案_第3页
高中数学开学第一课教案_第4页
高中数学开学第一课教案_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高中数学开学第一课教案(一)在自我介绍的时候喜欢给出自己的数字特征,也是希望通过这些方式能拓宽与大家交流的平台,希望能与大家在课堂中相识,在生活中相知,不仅能成为你们知识的传授者,方法的指引者,更希望成为你们情感上的依赖者。二、相信大家对于高中学习都充满着好奇,和初中相比,高中课程与初中课程有很大的不同。今天这节课我们不急于上新课,我想和大家聊一聊数学,一起来思考为什么要学(一)为什么要学习数学相信高一的第一节课是各位科任老师各显神通的时候,通过各种有趣的方式来突出每门课的重要性,作为数学老师我表达上不如文科老师迂回婉转和风趣幽默,我们更喜欢用数字说明问题。大家知道北大最著名的院系是什么系吗?早在蔡元培先生任北大校长时,就列数学系为北大第一系,这种传统一直保持到现在。为什么数学系在高校中有如此重要的地位?课本主编寄语是这样描述的:数学是有用的,数学有助于提高能力。问题1:大家知道海王星是怎么发现的,冥王星又是怎么被请出十大行星行列的?了一系列误差。这使许多天文学家纷纷致力这个问题的研究,进而发现天王星的脱轨与一柏林天文台收到来自法国巴黎的一封快信。发信人就是勒威耶。信中,勒威耶预告了一颗以往没有发现的新星:在摩羯座8星东约5度的地方,有一颗8等小星,每天退行69角秒。当夜,柏林天文台的加勒把巨大的天文望远镜对准摩羯座,果真在那里发现了一颗新勒威耶预告的相差甚微。全世界都震动了。人们依照勒威耶的建话里的名字把这颗星命名为"海王星"。书,以后也就将错就错了。经过多年的争论,国际天文学联合会通过投票表决做出最终决70多年的冥王星,自发现之日起地位就备受争议。马克思说:"一种科学只有在成功运用数学时,才算达到了真正完善的地步。"正因为数学是日常生活和进一步学习必不可少的基础和工具,一切科学到了最后都归结为数学问其实在我们的周围有很多事情都是可以用数学可以来解决的,无非很多人都没有用数问题2:基督教徒认为上帝是万能的。你们认为呢?如何来证明你的结论呢?(让同学发言)我的观点:上帝不是万能的。为什么呢?仔细听我讲来。那么他能够制作出一块无论什么力量都搬不动的石头根据假设,既然上帝是万能的,那么他一定能够搬的动他自己制造的那石头这与"无论什么力量都搬不动的石头"相矛盾所以假设不成立问题3:抓阄对个人来说公平吗?5张票中有一张奖票,那么先抽还是后抽对个人还当然,我们学习的数学只是数学学科体系中很基础,很小的一部分。现在课本上学的未必能直接应用于生活,主要是为以后学习更高层次的理科打读历史使人明智,学逻辑使人周密,学哲学使人善辩,学数学使人聪明…",也有人形象地称数学是思维的体操。下面我们通过具体的例子来故事一:据说国际象棋是古印度的一位宰相发明的。国王很欣赏他的这项发明,问他的宰相要什么赏赐。聪明的宰相说,"我所要的从一粒谷子(没错,是1粒,不是1两或1斤)开始。在这个有64格的棋盘上,第一格里放1粒谷子,第二格里放2粒,第三格里放4粒,即每下一格粒数加倍,……如此下去,一直放满到棋盘上的64格。这就是我所要人们通常凭借自己掌握的数学知识耍些小聪明,使问题妙不可言。数学游戏:两人相继轮流往长方形桌子上放同样大小的硬币,硬币一定要平放在桌面上,后放的硬币不能压在先放的硬币上,放最后一颗的硬币的人算赢。应该先放还是后放数学思想:退到最简单、最特殊的地方。了销售。工程师们从圆珠质量入手,从改进油墨性能入手进行改良,但收效甚微。于是厂家打出广告:解决此问题获奖金50万元。当时山地制笔厂的青年工人渡边看到女儿把圆珠笔用到快漏油时就德育不用这一现象中受到启发,很好地解决了这一问题,你认为他会渡边的成功之处就在于思维角度新,从问题的侧面轻巧取胜。也正体现了数学学习中经常用到的发散式思维。在数学学习中,既要有集中式思维又要有发散式思维。集中式思维是一种常用思维渠道,即为对问题的归纳,联系思维方式,表现为对解题方法的模仿和继承;而发散式思维即对问题开拓、创新,表现为对问题举一反三,触类旁通。在解决具体问题中,我们应该将两种思维方式相结合。学数学有利于培养人的思维品质:结构意识、整体意识、抽象意识、化归意识、优化意识、反思意识,尽管数学在培养学生的这些思维品质方面和其他学科存在着交集,但数学在其中的地位是无法被代替的。总之,学习数学可以使人思考问题更合乎逻辑,更有条理,更严密精确,更深入简洁,更善于创造……(二)如何学好数学高中数学的内容多,抽象性、理论性强,高中很注重自学能力的培养的,高中不会像初中那样老师一天到晚盯着你,在高中一定要注重自学能力的培养,谁的自学能力强,那么在一定的程度上影响着你的成绩以及你将来你发展的前途。同时要注意以下几点:第一:对数学学科特点有清楚的认识主编寄语里是这样描述数学的特征的:数学是自然的。数学的概念、方法、思想都是的形成过程以及它的应用,让数学显得合情合理,浑然天成。数学中没有含糊不清的词,把来龙去脉想清楚而是"想当然"的话,那就学不下去了。有人会说自己的基础不好。那我问下什么是基础?今天所学的知识就是明天的基础。明天学习的知识就是后天的基础。所以要学好每一天的内容,那么你打的基础就是最扎实的了。所以现在你们是在同一个起跑线上的,无所谓基础好不好。过去的几年里我分别带过五十一中和一中的学生,两边学生的课堂感觉差不多,应该说接受能力不相上下,有的时候我会选择在五十一中开公开课,因为课堂气氛活跃、轻松,但是成绩差异却是很大,原因在于我们同学外课自主时间的投入太少,学习习惯不太好。第三:学数学要摸索自己的学习方法学习、掌握并能灵活应用数学的途径有千万条,每个人都可以有与众不同的数学学习题和别人的问题带动自己的学习。同时,注意前后知识的衔接,类比地学、联系地学,既要从概念中看到它的具体背景,又要在具体的例子中想到它蕴含的一般概念。第四:养成良好的学习习惯(与一中学生相比较)㈠课前预习。怎样预习呢?就是自己在上课之前把内容先看一边,把自己不懂的地方做个记号或者打个问号,以至于上课的时候重点听,这样才能够很快提高自己的水平。但是预习不是很随便的把课本看一边,预习有个目标,那就是通过预习可以把书本后面的练再是高考题典,上课对于他们来说是第一轮高考复习。㈡上课认真听讲。上课的时候准备课本,一只笔,一本草稿。做不做笔记你们自己决定,不过我不大提倡数学课做笔记的。不过有一点,有些知识点比较重要,课本上又没有的,我要求你们把它写在课本上的相应的空白地方。还有如果你觉得某个例题比较新或者比较重要,也可以把它记在书本的相应位置上,这样以后复习起来就一目了然了。那么草稿要来干什么的呢?课堂上你可以自己演算还有做课堂练习。㈢关于作业。绝对不允许有抄作业的情况发生。如果我发现有谁抄作业,那么既然他这样喜欢抄,我就要你把当天的作业多抄几遍给我。那有人会问,碰到不会做的题目怎么间也要相互帮助,如果你让他抄袭你的作业这样不是帮助他而是害他,这个道理大家应该明白吧。我非常提倡同学之间的相互讨论问题的,这样才能够相互促进提高。二、向老师请教,要养成多想多问的习惯。我的办公室在二楼二号,欢迎大家前来交流㈣准备一本笔记本,作为自己的问题集。把平时自己不懂的和不大理解的还有易错的记录下来,并且要及时的消化,不懂的地方问老师。这是一个很好的办法,到考试的时候就可以有重点、有针对性的自己复习了。我高中的时候就是采用这样的方法把数学成绩提好的开始是成功的一半,新的学期开始了,请大家调整好自己的思想,找到学习的原获一种性格;播种一种性格,收获一种命运。愿每位同学都有个好的开始。高考状元学习数学的经验:回家再把笔记誊抄到笔记本上,这样通过两次抄写就基本印象深刻了"。另外,对于一些易下次再错就不可原谅啦,并在旁边打个打打的笑脸"。在学习过程中,我曾有这样的经历,有时见到一道题目一时找不到思路,就迫不急待非常简单,就自认为把题目已经理解透了。过几天再做这道题,还是无从下手。我觉得出现这种情况主要是因为我对这道题的接受是一个被动的过程。在这个过程中我只是机械地看到了具体解题过程,而没有真正理解解题思路。主动寻求解题思路法与这种被动接受的学习方法正好相反,这种方法强调从简单习题浅入深地训练自己,加上对常见题型的归类分析,再见到数学、物理习题时就会间反应出该题所考查的知识点和思维方式,有得心应手的感觉。解选择题有很多种方法,面对简单的选择题,也需要一些简单的技巧,这需要同学们平时在学习中慢慢摸索。但是我觉得解选择题最好的办法就是去掉选项法。培养自己的解题能力,也就是培养自己不被错误选项干扰的能力。尤其是面对一些比较难的、特别繁琐的选择题,我们可以把这些选项给去掉,把它当做填空题来做,把答案写出来之后,再从选项中去找,如果找不到的话,说明你肯定犯了错误。这样的话,还可以避免很多问题--比如有些同学容易看错题目,他做题目的时候,常常根据自己看错的一些数据去做,刚好选项里面有这样的答案,这样的话,就会选择错误答案;再者就是,有一些题目是理论性的选择题,可能它的选项本身就带有很大的误导性,去掉选项就不会受它的误导。很多同学觉得,数学课本上面的题目很简单,都是老师上课讲过的内容,下课以后,可是到考试的时候往往是难题做出来了,简单的题目却容易失分--尤其是前面的选择题、填空题这样一些小题。所以要特别注重学习课本,把课本上每一道题都做到位,这也是我要讲的第一点。第二点就是课本上的基本概念和基本思路。课本上面不光是习题重要,更重要的是它的基本概念和基本思路。数学课本有很多黑体字的大概念,这些都是我们平时很注意的,但是在一些小字里面,往往有一些非常细微的概念和原理是容易被忽视的,而考试的时候,往往就是把那些我们忽视的问题拎出来考。而一考大家就"倒一大片"。所以我们在看课本的时候,一定要把课本上的每一个字,每一个句子,即使很细小的一些原理吃透课本,不管怎么强调它的重要性都不为过。从微观上看,数学的学习就是如何解出每一道数学题。我的经验是关注通法,即关注普通解题法,有余力再掌握一些技巧。由于文科的数学题难度一般都不太大,基础题(即用注重基础,他首先讲的可能就是通法,那么这个时候就必须把老师讲的例题记下来。通法肯定会有一个固定的解题思路,上课的时候就得领会这个解题思路,课后最好再选一些类似的题目做一做,以便熟能生巧。其实解普通的题目也有多种方法,有通法,还有一些带有技巧性的方法。我觉得对于文科学生来说,通法更加重要一些,因为它能解答这一类型的所有题目,所以我觉得更实用。当然,学有余力的同学还可以研究一些技巧,但我本人不提倡钻得太深,因为这样会浪费时间。事实证明,通法掌握好了,高考一般都能取得优秀甚至是拔尖的成绩。也不例外,而在这里我强调的是如何充分利用自己的错题集。错题大约可以分两种:一种是自己根本不会做,因为太难了,没有思路;另一种是自己会做,因为粗心而做错。我觉是看错数字还是理解错题意?为什么会看错题?怎么样误解了题意?以后会不会犯同样的为什么会算错?有没有方法杜绝?怎样才能真正做到细心?其实在高考中,有多少题目是你不会做的呢?最终的竞争,还是在于你究竟能做对多少。如果你能把自己粗心的错误杜绝,那么在高考中一定会赢得非常好的成绩。在学习过程中,我曾有这样的经历,有时见到一道题目一时找不到思路,就迫不急待非常简单,就自认为把题目已经理解透了。过几天再做这道题,还是无从下手。我觉得出现这种情况主要是因为我对这道题的接受是一个被动的过程。在这个过程中我只是机械地看到了具体解题过程,而没有真正理解解题思路。主动寻求解题思路法与这种被动接受的学习方法正好相反,这种方法强调从简单习题入手,因为做简单的习题会比较轻松一些,简单的做出来之后再由浅入深。当在练习过程中遇到了难一点的题目时,有意识强迫自己不看答案、不看书套公式、不求助于别人(这些都是被动方法),而是静下心来,积极调动自己的大脑知识库,主动寻求解题思路。这样由浅入深地训练自己,加上对常见题型的归类分析,再见到数学、物理习题时就会在第一时间反应出该题所考查的知识点和思维方式,有得心应手的感觉。我学习数学的第一个方法是知识点网络总结法。平时做数学题时,一些题目往往会让我们感觉到无从下手,这个时候如果我们能联想到这道题目所考察的知识点,就可以以此为线索对症下药,找到解题的突破口。所谓的知识点网络总结法就是在平时做题时,如果遇到解答中出现困难的题目,就将与这道题目有关的解题方法和所考查的知识点在题目的旁边列出来,然后在本子上总结出来。这样经过一段时间的训练,在考试的时候看到题目题速度,为考生节约不少时间,另一方面做题的正确率很高,提高了解题命中率。为要根据自己的实力,为自己准确定位,保证基础题全部答对,并适当放弃自己力不从心的高难题,这样达到智力资源的优化配置,才能取得较好的成绩。每个人都有自己的长处和短处,扬长补短应该是一种比较有效的应试方法。俗话说"在平时考试中,数学最后一道题对我而言难度就挺大的,我经常只是做出第一问,第二问基本上是无可奈何、屡战屡败。在高考中,我一看最后一道题的第二个问题挺难的,于是很快决定放弃了这个难啃的"地瓜",并立刻回头检查前面已经做过的试题,幸运的是检查出做错的一道5分的选择题。或许,正是由于这样量力而行的战术,我保住了"芝麻"--基础题,只在较难题目上失去了12分,其他题全部做对,做到了数学考试的超水平发挥。"题海战术"是为了做题而做题,只要是题,统统拿来做,只注重做题的数量,却忽视了做题的质量。我做的题也很多,类型也很广,但在做题时我并不局限于这道题本身,而是能够进行发散性思考,想想如果把这一题的题目、条件改变一下能演变出什么题,从这道题我有什么额外收获。对同类型题,只要我觉得自己已经非常熟练了,就不再继续做这种类型的题目了,转而做其他类型的题目。你做的题目类型越多,你的视野就越开阔。我觉得这样做题才是高效率的。在做完很多类型的题目之后,我们还要进行总结:对哪一种类型的题目可以用哪些方总结一下错的原因和教训,以后决不让同一块石头绊倒两次。而热心的教学和师兄、师姐深切的关怀时,我想你们会暗暗决心:争取学好高中阶段的各门学科。在新的高考制度"3+综合"普遍吹散全国大地之时,代表人们基本素质的"3"科中,数学是最能体现一个人的思维能力,判断能力、反应敏捷能力和聪明程度的学科。数学直接影响着国民的基本素质和生活质量,良好的数学修养将为人的一生可持续发展奠定基础,高中阶段则应可能充分反映学习者对数学的不同需求,使每个学生都能学习适合他们自己一、高中数学课的设置易逻辑;第二章函数;第三章数列。高一年级下学期学习第一册(下第四章三角函数;程;第八章圆锥曲线方程。高二年级下学期学习第二册(下第九章直线、平面、简单几何体;第十章排列、组合和概率。高二结束将有数学"会考"。高三年级文科生学习第三册(选修1第一章统计;第二章极限与导数。高三年级理科生学习第三册(选修2第一章概率与统计;第二章极限;第三章导数;第四章复数。高三还将进行全面复习,并有1、知识差异。初中数学知识少、浅、难度"0-1800"范围内的,但实际当中也有7200和"-300"等角,为此,高中将把角的概念推广直线、平面、简单几何体将在三维空间中求角和距离等;还将学习"排列组合"知识,以便解决排队方法种数等问题。如:①三个人排成一行,有几种排队方法=6种②四人进行乒乓球双打比赛,有几种比赛场次答:=3种)高中将学习统计这些排列的数学方法。初中中对一个负数开平方无意义,但在高中规定了i2=--1,就使-1的平方根为±i.即可把数的概念进行推广,使数的概念扩大到复数范围等。这些知识同学们在以后的学习中(1)初中课堂教学量小、知识简单,通过教师课堂教慢的速度,争取让全面同学理解知识点和解题方法,课后老师布置作业,然后通过大量的课堂内、外练习、课外指导达到对知识的反反复复理解,直到学生掌握。而高中数学的学习随着课程开设多(有九们课学师布置课外题量相对初中减少,这样集中数学学习的时间相对比初中少,数学教师将相初中那样监督每个学生的作业和课外练习,就能达到相初中那样把知识让每个学生掌握后再(2)模仿与创新的区别。初中学生模仿做题,他们模仿老师思维推理教多,而高中模仿做题、思维学生有,但随着知识的难度大和知识面广泛,学生不能全部模仿,即就是学生全部模仿训练做题,也力培养。初中学生大量地模仿使学生带来了不利的思维定势,对高中学生带来了保守的、僵化的思想,封闭了学生的丰富反对创造精神。如学生在解决:比较a与2a的大小时要不就错、要不就答不全面。大多数学生不会分类讨论。3、学生自学能力的差异初中学生自学那能力低,大凡考试中所用的解题方法和数学思想,在初中教师基本上已反复训练,老师把学生要学生自己高度深刻理解的问题,都集中表现在他的耐心的讲解但高中的知识面广,知识要全部要教师训练完高考中的习题类型是不可能的,只有通过较少的、较典型的一两道例题讲解去融会贯通这一类型习题,如果不自学、不靠大量的阅读高考也随着全面的改革不断的深入,数学题型的开发在不断的多样化,近年来提出了应用型题、探索型题和开放型题,只有靠学生的自学去深刻理解和创新才能适靠的自学最终达到了自强。4、思维习惯上的差异初中学生由于学习数学知识的范围小,知识层次低,知识面笮,对实际问题的思维受到了局限,就几何来说,我们都接触的是现实生活中三维空间,但初中只学了平面几何,5、定量与变量的差异初中数学中,题目、已知和结论用常数给出的较多,一般地,答案是常数和定量。学局限地解决问题,在高中数学学习中我们将会大量地、广泛地应用代数的可变性去探索问题的普遍性和特殊性。如:求解一元二次方程时我们采用对方程ax2+bx+c=0(a≠0)的求解,讨论它是否有根和有根时的所有根的情形,使学生很快的掌握了对所有一元二次方程的解法。另外,在高中学习中我们还会通过对变量的分析,探索出分析、解决问题的思路良好的开端是成功的一半,高中数学课即将开始与初中知识有联系,但比初中数学知识系统。高一数学中我们将学习函数,函数是高中数学的重点,它在高中数学中是起着提纲的作用,它融汇在整个高中数学知识中,其中有数学中重要的数学思想方法;如:函数与方程思想、数形结合思想等,它也是高考的重点,近年来,高考压轴题都以函数题为考察方法的。高考题中与函数思想方法有关的习题占整个试题的60%以上。1、有良好的学习兴趣知道它,了解它不如爱好它,爱好它不如乐在其中。"好"和"乐"就是愿意学,喜欢学,这就是兴趣。兴趣是最好的老师,有兴趣才能产生爱好,爱好它就要去实践它,达到乐在其中,有兴趣才会形成学习的主动性和积极性。在数学学习中,我们把这种从自发的感性的乐趣出发上升为自觉的理性的"认识"过程,这自然会变为立志学好数学,成为数学学习的成功者。那么如何才能建立好的学习数学兴趣呢?(1)课前预习,对所学知识产生疑问,产生好奇心。(2)听课中要配合老师讲课,满足感官的兴奋性。听课中重点解决预习中疑问,把老师课堂的提问、停顿、教具和模型的演示都视为欣赏音乐,及思考与老师同步性,提高精神,把老师对你的提问的评价,变为鞭策学习的动力。(3)思考问题注意归纳,挖掘你学习的潜力。(4)听课中注意老师讲解时的数学思想,多问为什么要这样思考,这样的方法怎样是(5)把概念回归自然。所有学科都是从实际问题中产生归纳的,数学概念也回归于现只有回归现实才能使对概念的理解切实可靠,在应用概念判断、推理时会准确。2、建立良好的学习数学习惯。习惯是经过重复练习而巩固下来的稳重持久的条件反射和自然需要。建立良好的学习好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知识翻译成为便加宽知识面和培养自己再学习能力。3、有意识培养自己的各方面能力问

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论