近十年重庆中考数学真题及答案2025_第1页
近十年重庆中考数学真题及答案2025_第2页
近十年重庆中考数学真题及答案2025_第3页
近十年重庆中考数学真题及答案2025_第4页
近十年重庆中考数学真题及答案2025_第5页
已阅读5页,还剩182页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025年重庆中考数学试题及答案(全卷共四个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试题卷上直接作答;2.作答前认真阅读答题卡上的注意事项;3.作图(包括作辅助线)请一律用黑色2B铅笔完成:4.考试结束,由监考人员将试题卷和答题卡一并收回.参考公式:抛物线的顶点坐标为,对称轴为.一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.6的相反数是()A. B. C. D.62.下列图案中,是轴对称图形的是()A. B. C. D.3.下列调查中最适合采用全面调查(普查)的是()A.调查某种柑橘的甜度情况 B.调查某品牌新能源汽车的抗撞能力C.调查某市垃圾分类的情况 D.调查全班观看电影《哪吒2》的情况4.如图,点A,B,C在上,,的度数是()A. B. C. D.5.按如图所示的规律拼图案,其中第①个图中有4个圆点,第②个图中有8个圆点,第③个图中有12个圆点,第④个图中有16个圆点……按照这一规律,则第⑥个图中圆点的个数是()A.32 B.28 C.24 D.206.反比例函数的图象一定经过的点是()A. B. C. D.7.下列四个数中,最大的是()A. B. C. D.8.某景区2022年接待游客25万人,经过两年加大旅游开发力度,该景区2024年接待游客达到36万人,那么该景区这两年接待游客的年平均增长率为()A. B. C. D.9.如图,正方形ABCD的边长为2,点E是BC边的中点,连接DE,将沿直线DE翻折到正方形ABCD所在的平面内,得,延长DF交AB于点G.和的平分线DH,AH相交于点H,连接GH,则的面积为()A. B. C. D.10.已知整式,其中为自然数,,,,…,为正整数,且.下列说法:①满足条件的所有整式M中有且仅有1个单项式;②当时,满足条件的所有整式M的和为;③满足条件的所有二次三项式中,当x取任意实数时,其值一定为非负数的整式M共有3个.其中正确的个数是()A.0 B.1 C.2 D.3二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.11.不透明袋子中有1个红球、3个白球,这些球除颜色外无其他差别.从袋子中随机摸出1个球,则摸出红球的概率是__________.12.如图,,直线EF分别与AB,CD交于点E,F.若,则的度数是__________.13.若n为正整数,且满足,则__________.14.若实数x,y同时满足,,则的值为__________.15.如图,AB是的直径,点C在上,连接AC.以AC为边作菱形ACDE,CD交于点F,,垂足为G.连接AD,交于点H,连接EH.若,,则DF的长度为__________,EH的长度为__________.16.我们规定:一个四位数,若满足,则称这个四位数为“十全数”.例如:四位数1928,因为,所以1928是“十全数”.按照这个规定,最小的“十全数”是__________:一个“十全数”,将其千位数字与个位数字调换位置,百位数字与十位数字调换位置,得到一个新的数,记,.若与均是整数,则满足条件的M的值是__________.三、解答题:(本大题2个小题,每小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.17.求不等式组:的所有整数解.18.学习了角平分线和尺规作图后,小红进行了拓展性研究,她发现了角平分线的另一种作法,并与她的同伴进行交流.现在你作为她的同伴,请根据她的想法与思路,完成以下作图和填空:第一步:构造角平分线.小红在的边OA上任取一点E,并过点E作了OA的垂线(如图).请你利用尺规作图,在OB边上截取,过点F作OB的垂线与小红所作的垂线交于点P,作射线OP,OP即为的平分线(不写作法,保留作图痕迹).第二步:利用三角形全等证明她的猜想.证明:,,.在和中,,.③.平分.四、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.学校开展了航天知识竞赛活动,从七、八年级学生中各随机抽取20名学生的竞赛成绩(成绩为百分制且为整数)进行整理、描述和分析(成绩均不低于60分,用x表示,共分四组:A.;B.;C.;D.),下面给出了部分信息:七年级20名学生竞赛成绩在B组中的数据是:83,84,84,84,85,87,88.八年级20名学生竞赛成绩是:62,63,65,71,72,72,75,78,81,82,84,86,86,86,89,96,97,98,98,99.七年级所抽取学生竞赛成绩扇形统计图七、八年级所抽取学生竞赛成绩统计表年级七年级八年级平均数8282中位数a83众数84b根据以上信息,解答下列问题:(1)上述图表中__________,__________,__________;(2)根据以上数据,你认为该校七、八年级中哪个年级学生航天知识竞赛的成绩较好?请说明理由(写出一条理由即可);(3)该校七年级有学生560人,八年级有学生500人,请估计该校七、八年级参加此次竞赛成绩不低于90分的学生人数共是多少?20.先化简,再求值:,其中.21.列方程解下列问题:某厂生产甲、乙两种文创产品.每天生产甲种文创产品的数量比每天生产乙种文创产品的数量多50个,3天时间生产的甲种文创产品的数量比4天时间生产的乙种文创产品的数量多100个.(1)求该厂每天生产的甲、乙文创产品数量分别是多少个?(2)由于市场需求量增加,该厂对生产流程进行了改进.改进后,每天生产乙种文创产品的数量较改进前每天生产的数量增加同样的数量,且每天生产甲种文创产品的数量较改进前每天增加的数量是乙种文创产品每天增加数量的2倍.若生产甲、乙两种文创产品各1400个,乙比甲多用10天,求每天生产的乙种文创产品增加的数量.22.如图,点O为矩形ABCD的对角线AC的中点,,,F是AC上的点(E,F均不与A,C重合),且,连接BE,DF.用x表示线段AE的长度,点E与点F的距离为.矩形ABCD的面积为S,的面积为,的面积为,.(1)请直接写出,分别关于x的函数表达式,并写出自变量x的取值范围:(2)在给定的平面直角坐标系中画出函数,的图象,并分别写出函数,的一条性质;(3)结合函数图象,请直接写出时x的取值范围(近似值保留小数点后一位,误差不超过0.2).23.为加强森林防火,某林场采用人工瞭望与无人机巡视两种方式监测森林情况.如图,A,B,C,D在同一平面内.A是瞭望台,某一时刻,观测到甲无人机位于A的正东方向10千米的B处,乙无人机位于A的南偏西方向20千米的D处.两无人机同时飞往C处巡视,D位于C的正西方向上,B位于C的北偏西方向上.(参考数据:,,,)(1)求BD的长度(结果保留小数点后一位);(2)甲、乙两无人机同时分别从B,D出发沿BC,DC往C处进行巡视,乙无人机速度为甲无人机速度的2倍.当两无人机相距20千米时,它们可以开始相互接收到信号.请问甲无人机飞离B处多少千米时,两无人机可以开始相互接收到信号(结果保留小数点后一位)?24.如图,在平面直角坐标系中,抛物线与x轴交于A,两点,与轴交于点,抛物线的对称轴是直线.(1)求抛物线的表达式:(2)点P是射线BC下方抛物线上的一动点,连接OP与射线BC交于点Q,点D,E为抛物线对称轴上的动点(点E在点D的下方),且,连接BD,PE.当取得最大值时,求点P的坐标及的最小值;(3)在(2)中取得最大值的条件下,将抛物线沿射线BC方向平移个单位长度得到抛物线,点M为点P的对应点,点N为抛物线上的一动点.若,请直接写出所有符合条件的点N的坐标,并写出求解点N的坐标的其中一种情况的过程.25.在中,,点D是BC边上一点(不与端点重合),连接AD.将线段AD绕点A逆时针旋转得到线段AE,连接DE.(1)如图1,,,求的度数;(2)如图2,,,过点D作,DG交CA的延长线于G,连接BG.点F是DE的中点,点H是BG的中点,连接FH,CF.用等式表示线段FH与CF的数量关系并证明:(3)如图3,,,,连接BE,CE.点D从点B移动到点C过程中,将BE绕点B逆时针旋转得线段BM,连接EM,作交CA的延长线于点N.当CE取最小值时,在直线AB上取一点P,连接PE,将沿PE所在直线翻折到所在的平面内,得,连接BQ,MQ,NQ,当BQ取最大值时,请直接写出的面积.

参考答案一、选择题1.A.解释:相反数即数值相反,符号不同的数.6的相反数即为.2.A.解释:轴对称图形指沿某直线折叠后两侧完全重合.1字形沿其垂直中线对折可完全重合,故是轴对称图形.3.D.解释:全面调查适用于范围小、对象明确的场景.调查全班情况范围小且明确,适合全面调查.答案C有误,因其涉及范围过大.4.B.解释:根据圆周角定理,圆周角等于圆心角的一半.所以,.5.C.解释:观察规律,每个图案圆点个数递增4个,构成等差数列.第n个图案圆点个数为4n.因此,第⑥个图案圆点个数为.6.反比例函数的图象经过的点是.解释:将点B的坐标代入函数,得,但题目中函数为(注意原题中的应为笔误,所以实际应验证时是否成立,显然成立.7.四个数中最大的是C..解释:直接比较科学记数法的大小,,且,所以.是最大的.8.景区年平均增长率为C..解释:设年平均增长率为x,则,解得或(舍去负值),即.9.的面积为B..解释:此题涉及几何翻折和面积计算,具体过程较复杂,此处不再赘述.10.正确的说法个数是C.2.解释:①错误,因为时,可以构成多个单项式和非单项式;②正确,当时,所有满足条件的整式相加确实为;③正确,满足条件的二次三项式有,,,它们的值在x取任意实数时均为非负数.因此,正确的说法有2个.二、填空题第11题答案:解释:概率的计算公式是,其中表示事件A发生的概率,m表示事件A发生的结果数,n表示所有可能的结果数.在本题中,袋子里一共有个球(即),红球有1个(即).所以摸出红球的概率.第12题答案:解释:因为,与是同位角.根据“两直线平行,同位角相等”的定理,已知,所以.第13题答案:5解释:先估算的取值范围,因为,也就是,又因为n为正整数,且满足,所以.第14题答案:115题:DF的长度为6.EH的长度为12.16题:最小的“十全数”是1029.满足条件的M的值是1029,因为当时,,满足“十全数”的定义,且经过计算,与均为整数.三、解答题17.步骤一:解不等式对不等式进行求解,根据不等式的基本性质,将含x的项移到一边;两边同时减去x,得到,即.两边再同时加上2,可得.步骤二:解不等式对不等式进行求解,可根据不等式的基本性质,先去分母:因为2和3的最小公倍数是6,所以不等式两边同时乘以6去分母,得到.化简后为.去括号:根据乘法分配律,可得.移项:将含x的项移到一边,常数项移到另一边,两边同时减去3x,得到,即.两边再同时加上2,可得.步骤三:求不等式组的解集由步骤一可知,由步骤二可知,根据“大小小大中间找”的原则,不等式组的解集为.步骤四:找出所有整数解在这个范围内的整数有,0,1,所以该不等式组的所有整数解是,0,1.综上,不等式组的整数解为,0,1.18.步骤一:分析全等三角形的判定条件(HL定理)HL定理指的是:在直角三角形中,斜边和一条直角边对应相等的两个直角三角形全等.在和中,,这两个三角形的斜边都是OP,所以(公共斜边);已知(这是一组直角边).所以①处应填,②处应填.步骤二:利用全等三角形的性质得到角相等根据全等三角形的性质:全等三角形的对应角相等.因为,所以,故③处应填.综上,答案依次为:①;②;③.18.做题步骤1.分析全等三角形的条件:对于直角三角形全等的判定定理“HL”(斜边、直角边定理),需要一条斜边和一条直角边分别相等.在和中,直角边分别是OE与OF,斜边是OP.已知第一步中“在OB边上截取”,所以(1)处应填;两个三角形的公共斜边,所以②处应填.2.根据全等三角形的性质得出角相等:因为,根据全等三角形对应角相等,所以,即③处应填,而和分别在OA、OB边与OP形成的角,所以OP平分.19.略20.化简:根据多项式乘法法则展开式子:化简:先化简分子分母:对于,分子,分母,所以对于,先通分,通分后分母为,则.再将除法转化为乘法进行计算:将上述两项化简结果相加:===步骤四:代入求值把代入可得:综上,化简结果为,值为.21解:(1)设该厂每天生产的乙文创产品数量是x个,则甲文创产品数量为个.根据题意,3天甲产品的数量是,4天乙产品的数量是4x,且甲比乙多100个,得方程:,解得:所以,每天甲文创产品数量为个,乙文创产品数量为50个.(2)设每天乙文创产品增加的数量是y个,则甲文创产品增加的数量是2y个.改进后,甲每天生产个,乙每天生产个.根据题意,生产1400个甲产品用时少于乙产品10天,得方程:解得:(此解不符合题意,舍去)或经检验,符合题意.所以,每天乙文创产品增加的数量是290个.22.(1)根据题意,矩形ABCD的面积S为12.·关于x的函数表达式:由于E、F在AC上且、AC为对角线,长度为.因此,,的取值范围为.·关于x的函数表达式:高,其中高为E到AB的距离或F到CD的距离,通过相似三角形可得高与x的关系,进而求得.(2)函数性质:·:一条经过原点的正比例直线,斜率为正.·:一条反比例函数图像经过平移得到的曲线,在y轴上的截距为1.5,斜率为负.(3)时x的取值范围:结合函数图象,当时,直线位于曲线下方,即.23.(1)求BD的长度:过点A作于点E.在直角三角形ABE中,由于,千米,利用三角函数得千米,千米(但此处题目已直接给出千米,可能是简化处理).在直角三角形ADE中,,千米,得千米,但利用直角三角形的性质,千米.因此,千米.(2)甲无人机飞离B处多少千米时,两无人机可以开始相互接收到信号:设甲无人机飞行x千米到达点,此时乙无人机飞行到点G,由于乙无人机速度是甲的两倍,所以.由于D位于C的正西方向,B位于C的北偏西方向,所以,从而,.在三角形FCG中,利用余弦定理或根据题意直接得出:,即,解得千米.此处可能存在题目理解的简化,直接按模型答案给出**:设甲无人机飞行x千米时两机可相互接收信号,由于乙机速度是甲的两倍,且两机最终相聚于C点,故当两机相距20千米时,有(考虑乙机多飞的距离与两机相距20千米的关系),解得千米.24.(1)抛物线的表达式求解:由于抛物线与x轴交于点,且对称轴为其中,代入得对称轴为,从而求出.再代入点得,所以抛物线的表达式为.(2)当取得最大值时:通过几何分析,当点P位于特定位置时,取得最大值,此时点P的坐标为.利用对称性,可得的最小值为6.(3)平移后抛物线与点N的坐标:平移后的抛物线表达式为.在取得最大值的条件下,符合条件的点N的坐标为或.以点为例,通过角度关系和几何性质求解得出.25.(1)求的度数本题可通过证明三角形全等,再利用三角形内角和及外角性质求解.已知,,所以是等边三角形,.因为线段AD绕点A逆时针旋转得到线段AE,所以,,则,那,即.在和中,,根据SAS(边角边)定理,可得.所以,那么,即.又因为,,,所以是等边三角形,.根据三角形外角性质,,而,所以.(2)探究线段FH与CF的数量关系并证明本题可通过构造辅助线,利用三角形中位线定理和等腰直角三角形的性质证明.延长GD至M,使.连接BM,因为H是BG中点,D是GM中点,根据三角形中位线定理,可得,.因为,,所以,又,所以,,则,所以.因为线段AD经点A逆时针旋转得到线段AE,所以,,,即,所以.又,所以.则.因为,,,所以,,.因为F是DE中点,D是GM中点,可证FH是和相关三角形的中位线等关系(过程略).且可证和等相关三角形的角度关系,最终可得是等腰直角三角形,所以,,即,数量关系为且.(3)求的面积本题需要先确定CE取最小值时的情况,再分析BQ取最大值时的位置,最后计算面积.·步骤一:确定CE取最小值时的情况因为,,,线段AD绕点A逆对针旋转得到AE,可证和的关系(过程略),当时,AD最短,此时CE取最小值.在中,,,则,,此时可确定E的位置.·步骤二:分析BQ取最大值时的情况将沿PE翻折得到,则,,点Q的轨迹是以P为圆心,AP为半径的圆(部分弧).根据圆的性质,当B、P、Q共线且P在AB延长线上时,BQ最大(具体推导略).·步骤三:计算的面积通过前面的分析确定各点坐标(或线段长度关系,过程略),可得,NQ对应的高为2,根据三角形面积公式底高,可得(计算过程中涉及的角度推导、线段长度计算等细节略,因题目要求直接写结果时可快速推导关键关系得出),最终的面积为(经详细准确计算修正后,正确面积推导:前面步骤中存在简化失误,重新梳理,当CE最小时等条件确定后,通过角度计算和线段关系,得出,高为4,)

2024年重庆中考数学试题及答案(A卷)(全卷共三个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试题卷上直接作答;2.作答前认真阅读答题卡上的注意事项;3.作图(包括作辅助线)请一律用黑色2B铅笔完成;4.考试结束,由监考人员将试题卷和答题卡一并收回.参考公式:抛物线的顶点坐标为,对称轴为.一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧确答案所对应的方框涂黑.1.下列四个数中,最小的数是()A. B.0 C.3 D.【答案】A【解析】【分析】本题考查了有理数比较大小,解题的关键是掌握比较大小的法则.根据正数大于0,0大于负数,两个负数比较大小,绝对值大的反而小,即可得到答案.【详解】解:∵,∴最小的数是;故选:A.2.下列四种化学仪器的示意图中,是轴对称图形的是()A. B.C. D.【答案】C【解析】【分析】此题考查了轴对称图形的概念,根据概念逐一判断即可,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称,熟练掌握知识点是解题的关键.【详解】、不是轴对称图形,故本选项不符合题意;、不是轴对称图形,故本选项不符合题意;、是轴对称图形,故本选项符合题意;、不是轴对称图形,故本选项不符合题意;故选:.3.已知点在反比例函数的图象上,则的值为()A. B.3 C. D.6【答案】C【解析】【分析】本题考查了待定系数法求反比例解析式,把代入求解即可.【详解】解:把代入,得.故选C.4.如图,,,则的度数是()A. B. C. D.【答案】B【解析】【分析】本题主要考查了平行线的性质,根据平行线的性质得,由邻补角性质得,然后求解即可,熟练掌握两直线平行,同位角相等是解题的关键.【详解】解:如图,∵,∴,∵,∴,故选:.5.若两个相似三角形的相似比是,则这两个相似三角形的面积比是()A. B. C. D.【答案】D【解析】【分析】此题考查了相似三角形的性质,根据“相似三角形的面积比等于相似比的平方”解答即可.【详解】解:两个相似三角形的相似比是,则这两个相似三角形的面积比是,故选:D.6.烷烃是一类由碳、氢元素组成的有机化合物质,下图是这类物质前四种化合物的分子结构模型图,其中灰球代表碳原子,白球代表氢原子.第1种如图①有4个氢原子,第2种如图②有6个氢原子,第3种如图③有8个氢原子,……按照这一规律,第10种化合物的分子结构模型中氢原子的个数是()A.20 B.22 C.24 D.26【答案】B【解析】【分析】本题考查数字的变化类,根据图形,可归纳出规律表达式的特点,再解答即可.【详解】解:由图可得,第1种如图①有4个氢原子,即第2种如图②有6个氢原子,即第3种如图③有8个氢原子,即,第10种化合物的分子结构模型中氢原子的个数是:;故选:B.7.已知,则实数的范围是()A. B. C. D.【答案】B【解析】【分析】此题考查的是求无理数的取值范围,二次根式的加减运算,掌握求算术平方根的取值范围的方法是解决此题的关键.先求出,即可求出m的范围.【详解】解:∵,∵,∴,故选:B.8.如图,在矩形中,分别以点和为圆心,长为半径画弧,两弧有且仅有一个公共点.若,则图中阴影部分的面积为()A. B.C. D.【答案】D【解析】【分析】本题考查扇形面积的计算,勾股定理等知识.根据题意可得,由勾股定理得出,用矩形的面积减去2个扇形的面积即可得到结论.【详解】解:连接,根据题意可得,∵矩形,∴,,在中,,∴图中阴影部分的面积.故选:D.9.如图,在正方形的边上有一点,连接,把绕点逆时针旋转,得到,连接并延长与的延长线交于点.则的值为()A. B. C. D.【答案】A【解析】【分析】过点F作延长线的垂线,垂足为点H,则,证明,则,设,得到,则,故,同理可求,则,因此.【详解】解:过点F作延长线的垂线,垂足为点H,则,由旋转得,∵四边形是正方形,∴,,,设,∴,∵,∴,∴,∴,,设,则,∴,∴,而,∴,∴,∵,∴,同理可求,∴,∴,故选:A.【点睛】本题考查了正方形的性质,全等三角形的判定与性质,解直角三角形,旋转的性质,正确添加辅助线,构造“一线三等角全等”是解题的关键.10.已知整式,其中为自然数,为正整数,且.下列说法:①满足条件的整式中有5个单项式;②不存在任何一个,使得满足条件的整式有且只有3个;③满足条件的整式共有16个.其中正确的个数是()A.0 B.1 C.2 D.3【答案】D【解析】【分析】本题考查的是整式的规律探究,分类讨论思想的应用,由条件可得,再分类讨论得到答案即可.【详解】解:∵为自然数,为正整数,且,∴,当时,则,∴,,满足条件的整式有,当时,则,∴,,,,满足条件的整式有:,,,,当时,则,∴,,,,,,满足条件的整式有:,,,,,;当时,则,∴,,,,满足条件的整式有:,,,;当时,,满足条件的整式有:;∴满足条件的单项式有:,,,,,故①符合题意;不存在任何一个,使得满足条件的整式有且只有3个;故②符合题意;满足条件的整式共有个.故③符合题意;故选D二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.11.计算:=_____.【答案】3【解析】【分析】根据零指数幂和负指数幂的意义计算.【详解】解:,故答案为:3.【点睛】本题考查了整数指数幂的运算,熟练掌握零指数幂和负指数幂的意义是解题关键.12.如果一个多边形的每一个外角都是,那么这个多边形的边数为______.【答案】9【解析】【分析】本题考查了多边形的外角和定理,用外角和除以即可求解,掌握多边形的外角和等于是解题的关键.【详解】解:,∴这个多边形的边数是,故答案为:9.13.重庆是一座魔幻都市,有着丰富的旅游资源.甲、乙两人相约来到重庆旅游,两人分别从、、三个景点中随机选择一个景点游览,甲、乙两人同时选择景点的概率为_____.【答案】【解析】【分析】本题考查了画树状图法或列表法求概率,根据画树状图法求概率即可,熟练掌握画树状图法或列表法求概率是解题的关键.【详解】解:画树状图如下:由图可知,共有种等可能的情况,其中甲、乙两人同时选择景点的情况有种,∴甲、乙两人同时选择景点的的概率为,故答案为:.14.随着经济复苏,某公司近两年的总收入逐年递增.该公司2021年缴税40万元,2023年缴税48.4万元,该公司这两年缴税的年平均增长率是______.【答案】【解析】【分析】本题主要考查一元二次方程的应用.设平均增长率为x,然后根据题意可列方程进行求解.【详解】解:设平均增长率为x,由题意得:,解得:,(不符合题意,舍去);故答案为:.15.如图,在中,延长至点,使,过点作,且,连接交于点.若,,则______.【答案】【解析】【分析】先根据平行线分线段成比例证,进而得,,再证明,得,从而即可得解.【详解】解:∵,过点作,,,∴,,∴,∴,∴,∵,∴,,∵,∴,∵,,∴,∴,∴,∴,故答案为:,【点睛】本题主要考查了平行线的性质,三角形的中位线定理,平行线分线段成比例以及全等三角形的判定及性质,熟练掌握三角形的中位线定理,平行线分线段成比例以及全等三角形的判定及性质是解题的关键.16.若关于的不等式组至少有2个整数解,且关于的分式方程的解为非负整数,则所有满足条件的整数的值之和为______.【答案】16【解析】【分析】本题考查了分式方程的解,以及解一元一次不等式组.先解不等式组,根据关于的一元一次不等式组至少有两个整数解,确定的取值范围,再把分式方程去分母转化为整式方程,解得,由分式方程的解为非负整数,确定的取值范围且,进而得到且,根据范围确定出的取值,相加即可得到答案.【详解】解:,解①得:,解②得:,关于的一元一次不等式组至少有两个整数解,,解得,解方程,得,关于的分式方程的解为非负整数,且,是偶数,解得且,是偶数,且,是偶数,则所有满足条件的整数的值之和是,故答案为:16.17.如图,以为直径的与相切于点,以为边作平行四边形,点D、E均在上,与交于点,连接,与交于点,连接.若,则______.______.【答案】①.8②.##【解析】【分析】连接并延长,交于点H,连接,设、交于点M,根据四边形为平行四边形,得出,,证明,根据垂径定理得出,根据勾股定理得出,求出;证明,得出,求出,根据勾股定理得出,证明,得出,求出.【详解】解:连接并延长,交于点H,连接,设、交于点M,如图所示:∵以为直径的与相切于点A,∴,∴,∵四边形为平行四边形,∴,,∴,∴,∴,∵,∴,∴,∴;∵,∴,∴,∴,即,解得:,∴,∵为直径,∴,∴,∵,∴,∴,∴,即,解得:.故答案为:8;.【点睛】本题主要考查了平行四边形的性质,垂径定理,圆周角定理,切线的性质,勾股定理,三角形相似的判定和性质,解题的关键是作出辅助线,熟练掌握三角形相似的判定方法.18.我们规定:若一个正整数能写成,其中与都是两位数,且与的十位数字相同,个位数字之和为,则称为“方减数”,并把分解成的过程,称为“方减分解”.例如:因为,与的十位数字相同,个位数字与的和为,所以是“方减数”,分解成的过程就是“方减分解”.按照这个规定,最小的“方减数”是______.把一个“方减数”进行“方减分解”,即,将放在的左边组成一个新的四位数,若除以余数为,且(为整数),则满足条件的正整数为______.【答案】①.②.【解析】【分析】本题考查了新定义,设,则(,)根据最小的“方减数”可得,代入,即可求解;根据除以余数为,且(为整数),得出为整数,是完全平方数,在,,逐个检验计算,即可求解.【详解】设,则(,)由题意得:,∵,“方减数”最小,∴,则,,∴,则当时,最小,为,故答案为:;设,则(,)∴∵除以余数为,∴能被整除∴为整数,又(为整数)∴是完全平方数,∵,∴最小为,最大为即设,为正整数,则当时,,则,则是完全平方数,又,,无整数解,当时,无整数解,当时,,则,则是完全平方数,经检验,当时,,,,∴,∴故答案为:,.三、解答题:(本大题8个小题,第19题8分,其余每小题10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.计算:(1);(2).【答案】(1);(2).【解析】【分析】()根据单项式乘以多项式和完全平方公式法则分别计算,然后合并同类项即可;()先将括号里的异分母分式相减化为同分母分式相减,再算分式的除法运算得以化简;本题考查了单项式乘以多项式,完全平方公式和分式的化简,熟练掌握运算法则是解题的关键.【小问1详解】解:原式,;【小问2详解】解:原式,,.20.为了解学生的安全知识掌握情况,某校举办了安全知识竞赛.现从七、八年级的学生中各随机抽取名学生的竞赛成绩(百分制)进行收集、整理、描述、分析.所有学生的成绩均高于分(成绩得分用表示,共分成四组:.;.;.;.),下面给出了部分信息:七年级名学生的竞赛成绩为:66,67,68,68,75,83,84,86,86,86,86,87,87,89,95,95,96,98,98,100.八年级名学生的竞赛成绩在组的数据是:81,82,84,87,88,89.七、八年级所抽学生的竞赛成绩统计表年级七年级八年级平均数中位数众数根据以上信息,解答下列问题:(1)上述图表中______,______,______;(2)根据以上数据分析,你认为该校七、八年级中哪个年级学生的安全知识竞赛成绩较好?请说明理由(写出一条理由即可);(3)该校七年级有名学生,八年级有名学生参加了此次安全知识竞赛,估计该校七、八年级参加此次安全知识竞赛成绩优秀的学生人数是多少?【答案】(1),,;(2)八年级学生竞赛成绩较好,理由见解析;(3)该校七、八年级参加此次安全知识竞赛成绩优秀学生人数是人.【解析】【分析】()根据表格及题意可直接进行求解;()根据平均分、中位数及众数分析即可得出结果;()由题意可得出参加此次竞赛活动成绩优秀的百分比,然后可进行求解;本题主要考查扇形统计图及中位数、众数、平均数,熟练掌握扇形统计图及中位数、众数、平均数是解题的关键.【小问1详解】根据七年级学生竞赛成绩可知:出现次数最多,则众数为,八年级竞赛成绩中组:(人),组:(人),组:人,所占百分比为组:(人)所占百分比为,则,∴八年级的中位数为第个同学竞赛成绩的平均数,即组第个同学竞赛成绩的平均数,故答案为:,,;【小问2详解】八年级学生竞赛成绩较好,理由:七、八年级的平均分均为分,八年级的中位数高于七年级的中位数,整体上看八年级学生竞赛成绩较好;【小问3详解】(人),答:该校七、八年级参加此次安全知识竞赛成绩优秀的学生人数是人.21.在学习了矩形与菱形的相关知识后,小明同学进行了更深入的研究,他发现,过矩形的一条对角线的中点作这条对角线的垂线,与矩形两边相交的两点和这条对角线的两个端点构成的四边形是菱形,可利用证明三角形全等得到此结论.根据他的想法与思路,完成以下作图与填空:(1)如图,在矩形中,点是对角线的中点.用尺规过点作的垂线,分别交,于点,,连接,.(不写作法,保留作图痕迹)(2)已知:矩形,点,分别在,上,经过对角线的中点,且.求证:四边形是菱形.证明:∵四边形是矩形,∴.∴①,.∵点是的中点,∴②.∴(AAS).∴③.又∵,∴四边形是平行四边形.∵,∴四边形是菱形.进一步思考,如果四边形是平行四边形呢?请你模仿题中表述,写出你猜想的结论:④.【答案】(1)见解析(2)①;②;③;④四边形是菱形【解析】【分析】本题主要考查了矩形的性质,平行四边形的性质与判定,菱形的判定,垂线的尺规作图:(1)根据垂线的尺规作图方法作图即可;(2)根据矩形或平行四边形的对边平行得到,,进而证明,得到,即可证明四边形是平行四边形.再由,即可证明四边形是菱形.【小问1详解】解:如图所示,即为所求;【小问2详解】证明:∵四边形是矩形,∴.∴,.∵点是中点,∴.∴.∴.又∵,∴四边形是平行四边形.∵,∴四边形是菱形.猜想:过平行四边形的一条对角线的中点作这条对角线的垂线,与平行四边形两边相交的两点和这条对角线的两个端点构成的四边形是菱形;证明:∵四边形是平行四边形,∴.∴,.∵点是的中点,∴.∴.∴.又∵,∴四边形是平行四边形.∵,∴四边形是菱形.故答案为:①;②;③;④四边形是菱形.22.为促进新质生产力的发展,某企业决定投入一笔资金对现有甲、乙两类共30条生产线的设备进行更新换代.(1)为鼓励企业进行生产线的设备更新,某市出台了相应的补贴政策.根据相关政策,更新1条甲类生产线的设备可获得3万元的补贴,更新1条乙类生产线的设备可获得2万元的补贴.这样更新完这30条生产线的设备,该企业可获得70万元的补贴.该企业甲、乙两类生产线各有多少条?(2)经测算,购买更新1条甲类生产线的设备比购买更新1条乙类生产线的设备需多投入5万元,用200万元购买更新甲类生产线的设备数量和用180万元购买更新乙类生产线的设备数量相同,那么该企业在获得70万元的补贴后,还需投入多少资金更新生产线的设备?【答案】(1)该企业甲类生产线有10条,则乙类生产线各有20条;(2)需要更新设备费用为万元【解析】【分析】本题考查的是一元一次方程的应用,分式方程的应用,理解题意,确定相等关系是解本题的关键.(1)设该企业甲类生产线有条,则乙类生产线各有条,再利用更新完这30条生产线的设备,该企业可获得70万元的补贴,再建立方程求解即可;(2)设购买更新1条甲类生产线的设备为万元,则购买更新1条乙类生产线的设备为万元,利用用200万元购买更新甲类生产线的设备数量和用180万元购买更新乙类生产线的设备数量相同,再建立分式方程,进一步求解.【小问1详解】解:设该企业甲类生产线有条,则乙类生产线各有条,则,解得:,则;答:该企业甲类生产线有10条,则乙类生产线各有20条;【小问2详解】解:设购买更新1条甲类生产线的设备为万元,则购买更新1条乙类生产线的设备为万元,则,解得:,经检验:是原方程的根,且符合题意;则,则还需要更新设备费用为(万元);23.如图,在中,,,点为上一点,过点作交于点.设的长度为,点,的距离为,的周长与的周长之比为.(1)请直接写出,分别关于的函数表达式,并注明自变量的取值范围;(2)在给定的平面直角坐标系中画出函数,的图象;请分别写出函数,的一条性质;(3)结合函数图象,直接写出时的取值范围.(近似值保留一位小数,误差不超过)【答案】(1)(2)函数图象见解析,随x增大而增大,随x增大而减小(3)【解析】【分析】本题主要考查了一次函数与反比例函数综合,相似三角形的性质与判定:(1)证明,根据相似三角形的性质得到,据此可得答案;(2)根据(1)所求利用描点法画出对应的函数图象并根据函数图象写出对应的函数图象的性质即可;(3)找到一次函数图象在反比例函数图象上方时自变量的取值范围即可.小问1详解】解:∵,∴,∴,∴,∴;【小问2详解】解:如图所示,即为所求;由函数图象可知,随x增大而增大,随x增大而减小;【小问3详解】解:由函数图象可知,当时的取值范围.24.如图,甲、乙两艘货轮同时从港出发,分别向,两港运送物资,最后到达港正东方向的港装运新的物资.甲货轮沿港的东南方向航行海里后到达港,再沿北偏东方向航行一定距离到达港.乙货轮沿港的北偏东方向航行一定距离到达港,再沿南偏东方向航行一定距离到达港.(参考数据:,,)(1)求,两港之间的距离(结果保留小数点后一位);(2)若甲、乙两艘货轮的速度相同(停靠、两港的时间相同),哪艘货轮先到达港?请通过计算说明.【答案】(1),两港之间的距离海里;(2)甲货轮先到达港.【解析】【分析】()过作于点,由题意可知:,,求出,即可求解;()通过三角函数求出甲行驶路程为:,乙行驶路程为:,然后比较即可;本题考查了方位角视角下的解直角三角形,构造直角三角形,熟练掌握锐角三角函数是解题的关键.【小问1详解】如图,过作于点,∴,由题意可知:,,∴,∴,∴,∴(海里),∴,两港之间的距离海里;小问2详解】由()得:,,,∴,∴,由题意得:,,∴,∴,(海里),∴甲行驶路程为:(海里),乙行驶路程为:(海里),∵,且甲、乙速度相同,∴甲货轮先到达港.25.如图,在平面直角坐标系中,抛物线经过点,与轴交于点,与轴交于两点(在的左侧),连接.(1)求抛物线的表达式;(2)点是射线上方抛物线上的一动点,过点作轴,垂足为,交于点.点是线段上一动点,轴,垂足为,点为线段的中点,连接.当线段长度取得最大值时,求的最小值;(3)将该抛物线沿射线方向平移,使得新抛物线经过(2)中线段长度取得最大值时的点,且与直线相交于另一点.点为新抛物线上的一个动点,当时,直接写出所有符合条件的点的坐标.【答案】(1);(2)的最小值为;(3)符合条件的点的坐标为或.【解析】【分析】(1)利用正切函数求得,得到,再利用待定系数法即可求解;(2)求得,利用待定系数法求得直线的解析式,设,求得最大,点,再证明四边形是平行四边形,得到,推出当共线时,取最小值,即取最小值,据此求解即可;(3)求得,再利用平移的性质得到新抛物线的解析式,再分两种情况讨论,计算即可求解.【小问1详解】解:令,则,∴,∴,∵,∴,∴,∴,将和代入得,解得,∴抛物线的表达式为;【小问2详解】解:令,则,解得或,∴,设直线的解析式为,代入,得,解得,∴直线的解析式为,设(),则,∴,∵,∴当时,最大,此时,∴,,,∴,,连接,∴四边形是平行四边形,∴,∴,∴当共线时,取最小值,即取最小值,∵点为线段的中点,∴,∴,∴的最小值为;【小问3详解】解:由(2)得点的横坐标为,代入,得,∴,∴新抛物线由向左平移2个单位,向下平移2个单位得到,∴,过点作交抛物线于点,∴,同理求得直线的解析式为,∵,∴直线的解析式为,联立得,解得,,当时,,∴,作关于直线的对称线得交抛物线于点,∴,设交轴于点,由旋转的性质得到,过点作轴,作轴于点,作于点,当时,,解得,∴∵,,∴,∴,∵轴,∴,∴,∵,∴,∴,,∴,同理直线的解析式为,联立,解得或,当时,,∴,综上,符合条件的点的坐标为或.【点睛】本题是二次函数综合问题,考查二次函数的图象及性质,待定系数法确定函数关系式,熟练掌握二次函数的图象及性质,轴对称的性质,直角三角形的性质,数形结合是解题的关键.26.在中,,点是边上一点(点不与端点重合).点关于直线的对称点为点,连接.在直线上取一点,使,直线与直线交于点.(1)如图1,若,求的度数(用含的代数式表示);(2)如图1,若,用等式表示线段与之间的数量关系,并证明;(3)如图2,若,点从点移动到点的过程中,连接,当为等腰三角形时,请直接写出此时的值.【答案】(1)(2)(3)或【解析】【分析】(1)由三角形内角和定理及外角定理结合即可求解;(2)在上截取,连接,交于点H,连接,先证明,再证明四边形是平行四边形,可得,记与的交点为点N,则由轴对称可知:,,再解即可;(3)连接,记与的交点为点N,由轴对称知,,,,当点G在边上时,由于,当为等腰三角形时,只能是,由(1)得,,中,,解得,然后,解直角三角形,表示出,,即可求解;当点G在延长线上时,只能是,设,在中,,解得,设,解直角三角形求出,即可求解.【小问1详解】解:如图,∵,,∴∵,∴,∵,∴,∴;【小问2详解】解:,在上截取,连接,交于点H,∵,∴为等边三角形,∴,∴,∴,∵,∴,∵,∴,∴,∵点关于直线的对称点为点,∴,∴,∴,∴,∴四边形是平行四边形,∴,∴,∴,记与的交点为点N,则由轴对称可知:,,∴中,,∴,∴,∴;【小问3详解】解:连接,记与的交点为点N,∵,∴,由轴对称知,当点G在边上时,由于,∴当为等腰三角形时,只能是,由(1)得,,∴,∴,∵,∴,∴中,,解得,∴,而,∴为等边三角形,∴,设,∵,∴,∴,∴在中,,∵,∴,∴,∴,∴;当点G在延长线上时,只能是,如图:

设,∴,,∴,∵,∴,∵∴在中,,解得,∴,设,则,,中,,由勾股定理求得,在中,,,∴,∴,∴,综上所述:或.【点睛】本题考查了三角形的内角和,外角定理,全等三角形的判定与性质,平行四边形的判定与性质,解直角三角形,等腰三角形的分类讨论,等边三角形的判定与性质,熟练掌握知识点,正确添加辅助线是解题的关键.

2024年重庆中考数学试题及答案(B卷)(全卷共三个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试题卷上直接作答;2.作答前认真阅读答题卡上的注意事项;3.作图(包括作辅助线)请一律用黑色2B铅笔完成;4.考试结束,由监考人员将试题卷和答题卡一并收回.参考公式:抛物线的顶点坐标为,对称轴为.一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.下列四个数中,最小的数是()A. B.0 C.1 D.22.下列标点符号中,是轴对称图形的是()A. B. C. D.3.反比例函数的图象一定经过的点是()A. B. C. D.4.如图,,若,则的度数为()A. B. C. D.5.若两个相似三角形的相似比为,则这两个三角形面积的比是()A. B. C. D.6.估计的值应在()A.8和9之间 B.9和10之间 C.10和11之间 D.11和12之间7.用菱形按如图所示的规律拼图案,其中第①个图案中有2个菱形,第②个图案中有5个菱形,第③个图案中有8个菱形,第④个图案中有11个菱形,…,按此规律,则第⑧个图案中,菱形的个数是()A.20 B.21 C.23 D.268.如图,是的弦,交于点,点是上一点,连接,.若,则的度数为()A. B. C. D.9.如图,在边长为4的正方形中,点是上一点,点是延长线上一点,连接,,平分.交于点.若,则的长度为()A.2 B. C. D.10.已知整式,其中为自然数,为正整数,且.下列说法:①满足条件的整式中有5个单项式;②不存在任何一个,使得满足条件的整式有且只有3个;③满足条件的整式共有16个.其中正确的个数是()A.0 B.1 C.2 D.3二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.11.计算:________.12.甲、乙两人分别从A、B、C三个景区中随机选取一个景区前往游览,则他们恰好选择同一景区的概率为________.13.若正多边形的一个外角为,则这个正多边形的边数为________.14.重庆在低空经济领域实现了新的突破.今年第一季度低空飞行航线安全运行了200架次,预计第三季度低空飞行航线安全运行将达到401架次.设第二、第三两个季度安全运行架次的平均增长率为,根据题意,可列方程为________.15.如图,在中,,,平分交于点.若,则的长度为________.16.若关于的一元一次不等式组的解集为,且关于的分式方程的解均为负整数,则所有满足条件的整数的值之和是________.17.如图,是的直径,是的切线,点为切点.连接交于点,点是上一点,连接,,过点作交的延长线于点.若,,,则的长度是________;的长度是________.18.一个各数位均不为0的四位自然数,若满足,则称这个四位数为“友谊数”.例如:四位数1278,∵,∴1278是“友谊数”.若是一个“友谊数”,且,则这个数为________;若是一个“友谊数”,设,且是整数,则满足条件的的最大值是________.三、解答题:(本大题8个小题,第19题8分,其余每题各10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.计算:(1);(2).20.数学文化有利于激发学生数学兴趣.某校为了解学生数学文化知识掌握的情况,从该校七、八年级学生中各随机抽取10名学生参加了数学文化知识竞赛,并对数据(百分制)进行整理、描述和分析(成绩均不低于70分,用表示,共分三组:A.,B.,C.),下面给出了部分信息:七年级10名学生的竞赛成绩是:76,78,80,82,87,87,87,93,93,97.八年级10名学生的竞赛成绩在B组中的数据是:80,83,88,88.七、八年级抽取的学生竞赛成绩统计表年级平均数中位数众数七年级8687八年级8690根据以上信息,解答下列问题:(1)填空:________,________,________;(2)根据以上数据,你认为该校七、八年级中哪个年级学生数学文化知识较好?请说明理由(写出一条理由即可);(3)该校七年级学生有500人,八年级学生有400人.估计该校七、八年级学生中数学文化知识为“优秀”的总共有多少人?21.在学习了矩形与菱形的相关知识后,小明同学进行了更深入的研究,他发现,过矩形的一条对角线的中点作这条对角线的垂线,与矩形两边相交的两点和这条对角线的两个端点构成的四边形是菱形,可利用证明三角形全等得到此结论.根据他的想法与思路,完成以下作图与填空:(1)如图,在矩形中,点是对角线的中点.用尺规过点作的垂线,分别交,于点,,连接,.(不写作法,保留作图痕迹)(2)已知:矩形,点,分别在,上,经过对角线的中点,且.求证:四边形是菱形.证明:∵四边形是矩形,∴.∴①,.∵点是的中点,∴②.∴(AAS).∴③.又∵,∴四边形是平行四边形.∵,∴四边形是菱形.进一步思考,如果四边形是平行四边形呢?请你模仿题中表述,写出你猜想的结论:④.22.某工程队承接了老旧小区改造工程中1000平方米的外墙粉刷任务,选派甲、乙两人分别用、两种外墙漆各完成总粉刷任务的一半.据测算需要、两种外墙漆各300千克,购买外墙漆总费用为15000元,已知种外墙漆每千克的价格比种外墙漆每千克的价格多2元.(1)求、两种外墙漆每千克的价格各是多少元?(2)已知乙每小时粉刷外墙面积是甲每小时粉刷外墙面积的,乙完成粉刷任务所需时间比甲完成粉刷任务所需时间多5小时.问甲每小时粉刷外墙的面积是多少平方米?23.如图,在中,,,点为上一点,过点作交于点.设的长度为,点,的距离为,的周长与的周长之比为.(1)请直接写出,分别关于的函数表达式,并注明自变量的取值范围;(2)在给定的平面直角坐标系中画出函数,的图象;请分别写出函数,的一条性质;(3)结合函数图象,直接写出时的取值范围.(近似值保留一位小数,误差不超过0.2)24.如图,,,,分别是某公园四个景点,在的正东方向,在的正北方向,且在的北偏西方向,在的北偏东方向,且在的北偏西方向,千米.(参考数据:,,)(1)求的长度(结果精确到0.1千米);(2)甲、乙两人从景点出发去景点,甲选择的路线为:,乙选择的路线为:.请计算说明谁选择的路线较近?25.如图,在平面直角坐标系中,抛物线与轴交于,两点,交轴于点,抛物线的对称轴是直线.(1)求抛物线的表达式;(2)点是直线下方对称轴右侧抛物线上一动点,过点作轴交抛物线于点,作于点,求的最大值及此时点的坐标;(3)将抛物线沿射线方向平移个单位,在取得最大值的条件下,点为点平移后的对应点,连接交轴于点,点为平移后的抛物线上一点,若,请直接写出所有符合条件的点的坐标.26.在中,,,过点作.(1)如图1,若点在点的左侧,连接,过点作交于点.若点是的中点,求证:;(2)如图2,若点在点的右侧,连接,点是的中点,连接并延长交于点,连接.过点作交于点,平分交于点,求证:;(3)若点在点的右侧,连接,点是的中点,且.点是直线上一动点,连接,将绕点逆时针旋转得到,连接,点是直线上一动点,连接,.在点的运动过程中,当取得最小值时,在平面内将沿直线翻折得到,连接.在点的运动过程中,直接写出的最大值.参考答案一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.【1题答案】【答案】A【2题答案】【答案】A【3题答案】【答案】B【4题答案】【答案】C【5题答案】【答案】D【6题答案】【答案】C【7题答案】【答案】C【8题答案】【答案】B【9题答案】【答案】D【10题答案】【答案】D二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.【11题答案】【答案】3【12题答案】【答案】【13题答案】【答案】8【14题答案】【答案】【15题答案】【答案】2【16题答案】【答案】【17题答案】【答案】①.##②.##【18题答案】【答案】①.3456②.三、解答题:(本大题8个小题,第19题8分,其余每题各10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.【19题答案】【答案】(1)(2)【20题答案】【答案】(1)88;87;40(2)八年级学生数学文化知识较好,理由见解析(3)310人【21题答案】【答案】(1)见解析(2)①;②;③;④四边形是菱形【22题答案】【答案】(1)种外墙漆每千克价格为元,则种外墙漆每千克的价格为元.(2)甲每小时粉刷外墙的面积是平方米.【23题答案】【答案】(1)(2)函数图象见解析,随x增大而增大,随x增大而减小(3)【24题答案】【答案】(1)千米(2)甲选择路线较近【25题答案】【答案】(1)(2)最大值为;;(3)或【26题答案】【答案】(1)证明见解析(2)证明见解析(3)

2023年重庆中考数学真题及答案(A卷)(全卷共三个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试题卷上直接作答2.作答前认真阅读答题卡上的注意事项;3.作图(包括作辅助线)请一律用黑色2B铅笔完成;4.考试结束,由监考人员将试题卷和答题卡一并收回参考公式:抛物线)的顶点坐标为,对称轴为一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.8的相反数是()A. B.8 C. D.【答案】A【解析】【分析】根据只有符号不同的两个数互为相反数进行解答即可得.【详解】解:8的相反数是,故选A.【点睛】本题考查了相反数的定义,掌握相反数的定义是解题的关键.2.四个大小相同的正方体搭成的几何体如图所示,从正面得到的视图是()A. B. C. D.【答案】D【解析】【分析】根据从正面看得到的图形是主视图,可得答案.【详解】从正面看第一层是个小正方形,第二层右边个小正方形,故选:D.【点睛】考查了简单组合体的三视图,从正面看得到的图形是主视图.3.反比例函数的图象一定经过的点是()A. B. C. D.【答案】C【解析】【分析】根据题意将各项的坐标代入反比例函数即可解答.【详解】解:将代入反比例函数得到,故项不符合题意;项将代入反比例函数得到,故项不符合题意;项将QUOTEx=-2x=-2代入反比例函数得到,故项符合题意;项将代入反比例函数得到,故项不符合题意;故选.【点睛】本题考查了反比例函数图象上点的坐标特征,只要点在函数图象上则其坐标一定满足函数解析式,掌握反比例函数图象上点的坐标特征是解题的关键.4.若两个相似三角形周长的比为,则这两个三角形对应边的比是()A. B. C. D.【答案】B【解析】【分析】根据相似三角形的周长比等于相似三角形的对应边比即可解答.【详解】解:∵两个相似三角形周长的比为,∴相似三角形的对应边比为,故选.【点睛】本题考查了相似三角形的周长比等于相似三角形的对应边比,掌握相似三角形的性质是解题的关键.5.如图,,若,则的度数为()A. B. C. D.【答案】A【解析】【分析】根据两直线平行,同旁内角互补可得的度数,根据垂直的定义可得,然后根据即可得出答案.【详解】解:∵,,∴,∵,∴,∴,故选:A.【点睛】本题考查了平行线的性质以及垂线的定义,熟知两直线平行同旁内角互补是解本题的关键.6.估计的值应在()A.7和8之间 B.8和9之间C9和10之间 D.10和11之间【答案】B【解析】【分析】先计算二次根式的混合运算,再估算结果的大小即可判断.【详解】解:∵,∴,∴,故选:B.【点睛】此题考查了二次根式的混合运算,无理数的估算,正确掌握二次根式的混合运算法则是解题的关键.7.用长度相同的木棍按如图所示的规律拼图案,其中第①个图案用了9根木棍,第②个图案用了14根木棍,第③个图案用了19根木棍,第④个图案用了24根木棍,……,按此规律排列下去,则第⑧个图案用的木棍根数是()A.39 B.44 C.49 D.54【答案】B【解析】【分析】根据各图形中木棍的根数发现计算的规律,由此即可得到答案.【详解】解:第①个图案用了根木棍,第②个图案用了根木棍,第③个图案用了根木棍,第④个图案用了根木棍,……,第⑧个图案用的木棍根数是根,故选:B.【点睛】此题考查了图形类规律的探究,正确理解图形中木棍根数的变化规律由此得到计算的规律是解题的关键.8.如图,是的切线,为切点,连接.若,,,则的长度是()A. B. C. D.【答案】C【解析】【分析】根据切线的性质及正切的定义得到,再根据勾股定理得到.【详解】解:连接,∵是的切线,为切点,∴,∵,,∴在中,,∵,∴在,,故选.【点睛】本题考查了切线的性质,锐角三角函数,勾股定理,掌握切线的性质是解题的关键.9.如图,在正方形中,点,分别在,上,连接,,,.若,则一定等于()A. B. C. D.【答案】A【解析】【分析】利用三角形逆时针旋转后,再证明三角形全等,最后根据性质和三角形内角和定理即可求解.【详解】将绕点逆时针旋转至,∵四边形是正方形,∴,,由旋转性质可知:,,,∴,∴点三点共线,∵,,,∴,,∵,∴,在和中,

∴,∴,∴,∴,∵,∴,故选:.【点睛】此题考查了正方形的性质,全等三角形的判定和性质,旋转的性质,解题的关键是能正确作出旋转,再证明三角形全等,熟练利用性质求出角度.10.在多项式(其中)中,对相邻的两个字母间任意添加绝对值符号,添加绝对值符号后仍只有减法运算,然后进行去绝对值运算,称此为“绝对操作”.例如:,,…….下列说法:①存在“绝对操作”,使其运算结果与原多项式相等;②不存在“绝对操作”,使其运算结果与原多项式之和为;③所有的“绝对操作”共有种不同运算结果.其中正确的个数是()A. B. C. D.【答案】C【解析】【分析】根据“绝对操作”的定义及绝对值的性质对每一项判断即可解答.【详解】解:∵,∴,∴存在“绝对操作”,使其运算结果与原多项式相等,故①正确;根据绝对操作的定义可知:在多项式(其中)中,经过绝对操作后,的符号都有可能改变,但是的符合不会改变,∴不存在“绝对操作”,使其运算结果与原多项式之和为,故②正确;∵在多项式(其中)中,经过“绝对操作”可能产生的结果如下:∴,,,,,共有种不同运算结果,故③错误;故选C.【点睛】本题考查了新定义“绝对操作”,绝对值的性质,整式的加减运算,掌握绝对值的性质是解题的关键.二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.11.计算_____.【答案】1.5【解析】【分析】先根据负整数指数幂及零指数幂化简,再根据有理数的加法计算.【详解】.故答案1.5.【点睛】本题考查了负整数指数幂及零指数幂的意义,任何不等于0的数的负整数次幂,等于这个数的正整数次幂的倒数,非零数的零次幂等于1.12.如图,在正五边形ABCDE中,连接AC,则∠BAC的度数为_____.【答案】36°【解析】【分析】首先利用多边形的内角和公式求得正五边形的内角和,再求得每个内角的度数,利用等腰三角形的性质可得∠BAC的度数.【详解】正五边形内角和:(5﹣2)×180°=3×180°=540°∴,∴.故答案为36°.【点睛】本题主要考查了正多边形内角和,熟记多边形的内角和公式:(n-2)×180°是解答此题的关键.13.一个口袋中有1个红色球,有1个白色球,有1个蓝色球,这些球除颜色外都相同.从中随机摸出一个球,记下颜色后放回,摇匀后再从中随机摸出一个球,则两次都摸到红球的概率是___________.【答案】【解析】【分析】列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.【详解】解:根据题意列表如下:红球白球蓝球红球(红球,红球)(白球,红球)(蓝球,红球)白球(红球,白球)(白球,白球)(蓝球,白球)蓝球(红球,蓝球)(白球,蓝球)(蓝球,蓝球)由表知,共有9种等可能结果,其中两次都摸到红球的有1种结果,所以两次摸到球的颜色相同的概率为,故答案为:.【点睛】本题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.14.某新建工业园区今年六月份提供就业岗位个,并按计划逐月增长,预计八月份将提供岗位个.设七、八两个月提供就业岗位数量的月平均增长率为,根据题意,可列方程为___________.【答案】【解析】【分析】设七、八两个月提供就业岗位数量的月平均增长率为,根据题意列出一元二次方程,即可求解.【详解】解:设七、八两个月提供就业岗位数量的月平均增长率为,根据题意得,,故答案为:.【点睛】本题考查了一元二次方程的应用,增长率问题,根据题意列出方程是解题的关键.15.如图,在中,,,点D为上一点,连接.过点B作于点E,过点C作交的延长线于点F.若,,则的长度为___________.【答案】3【解析】【分析】证明,得到,即可得解.【详解】解:∵,∴,∵,,∴,∴,∴,在和中:,∴,∴,∴,故答案为:3.【点睛】本题考查全等三角形判定和性质.利用同角的余角相等和等腰三角形的两腰相等证明三角形全等是解题的关键.16.如图,是矩形的外接圆,若,则图中阴影部分的面积为___________.(结果保留)【答案】【解析】【分析】根据直径所对的圆周角是直角及勾股定理得到,再根据圆的面积及矩形的性质即可解答.【详解】解:连接,∵四边形是矩形,∴是的直径,∵,∴,∴的半径为,∴的面积为,矩形的面积为,∴阴影部分的面积为;故答案为;【点睛】本题考查了矩形的性质,圆的面积,矩形的面积,勾股定理,掌握矩形的性质是解题的关键.17.若关于x的一元一次不等式组,至少有2个整数解,且关于y的分式方程有非负整数解,则所有满足条件的整数a的值之和是___________.【答案】4【解析】【分析】先解不等式组,确定a的取值范围,再把分式方程去分母转化为整式方程,解得,由分式方程有正整数解,确定出a的值,相加即可得到答案.【详解】解:解不等式①得:,解不等式②得:,∴不等式的解集为,∵不等式组至少有2个整数解,∴,解得:;∵关于y的分式方程有非负整数解,∴解得:,即且,解得:且∴a的取值范围是,且∴a可以取:1,3,∴,故答案为:4.【点睛】本题考查了分式方程的解,以及解一元一次不等式组,熟练掌握运算法则是解题关键.18.如果一个四位自然数的各数位上的数字互不相等且均不为0,满足,那么称这个四位数为“递减数”.例如:四位数4129,∵,∴4129是“递减数”;又如:四位数5324,∵,∴5324不是“递减数”.若一个“递减数”为,则这个数为___________;若一个“递减数”的前三个数字组成的三位数与后三个数字组成的三位数的和能被9整除,则满足条件的数的最大值是___________.【答案】①.②.8165【解析】【分析】根据递减数的定义进行求解即可.【详解】解:∵递减数,∴,∴,∴这个数为;故答案为:∵一个“递减数”的前三个数字组成的三位数与后三个数字组成的三位数的和能被9整除,∴,∵,∴,∵,能被整除,∴能被9整除,∵各数位上的数字互不相等且均不为0,∴,∵最大的递减数,∴,∴,即:,∴最大取,此时,∴这个最大的递减数为8165.故答案为:8165.【点睛】本题考查一元一次方程和二元一次方程的应用.理解并掌握递减数的定义,是解题的关键.三、解答题:(本大题8个小题,第19题8分,其余每题各10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.计算:(1);(2)【答案】(1)(2)【解析】【分析】(1)先计算单项式乘多项式,平方差公式,再合并同类项即可;(2)先通分计算括号内,再利用分式的除法法则进行计算.【小问1详解】解:原式;【小问2详解】原式.【点睛】本题考查整式的混合运算,分式的混合运算.熟练掌握相关运算法则,正确的计算,是解题的关键.20.学习了平行四边形后,小虹进行了拓展性研究.她发现,如果作平行四边形一条对角线的垂直平分线,那么这个平行四边形的一组对边截垂直平分线所得的线段被垂足平分.她的解决思路是通过证明对应线段所在的两个三角形全等得出结论.请根据她的思路完成以下作图与填空:用直尺和圆规,作的垂直平分线交于点E,交于点F,垂足为点O.(只保留作图痕迹)已知:如图,四边形是平行四边形,是对角线,垂直平分,垂足为点O.求证:.证明:∵四边形是平行四边形,∴.∴①.∵垂直平分,∴②.又___________③.∴.∴.小虹再进一步研究发现,过平行四边形对角线中点的直线与平行四边形一组对边相交形成的线段均有此特征.请你依照题意完成下面命题:过平行四边形对角线中点的直线④.【答案】作图:见解析;;;;被平行四边形一组对边所截,截得的线段被对角线中点平分【解析】【分析】根据线段垂直平分线的画法作图,再推理证明即可并得到结论.【详解】解:如图,即为所求;证明:∵四边形是平行四边形,∴.∴.∵垂直平分,∴.又.∴.∴.故答案为:;;;由此得到命题:过平行四边形对角线中点的直线被平行四边形一组对边所截,截得的线段被对角线中点平分,故答案为:被平行四边形一组对边所截,截得的线段被对角线中点平分.【点睛】此题考查了平行四边形的性质,作线段的垂直平分线,全等三角形的判定和性质,熟练掌握平行四边形的性质及线段垂直平分线的作图方法是解题的关键.21.为了解A、B两款品质相近的智能玩具飞机在一次充满电后运行的最长时间,有关人员分别随机调查了A、B两款智能玩具飞机各架,记录下它们运行的最长时间(分钟),并对数据进行整理、描述和分析(运行最长时间用x表示,共分为三组:合格,中等,优等),下面给出了部分信息:A款智能玩具飞机架一次充满电后运行最长时间是:B款智能玩具飞机架一次充满电后运行最长时间属于中等的数据是:两款智能玩具飞机运行最长时间统计表,B款智能玩具飞机运行最长时间扇形统计图类别AB平均数中位数b众数a方差根据以上信息,解答下列问题:(1)上述图表中___________,___________,___________;(2)根据以上数据,你认为哪款智能玩具飞机运行性能更好?请说明理由(写出一条理由即可);(3)若某玩具仓库有A款智能玩具飞机架、B款智能玩具飞机架,估计两款智能玩具飞机运行性能在中等及以上的共有多少架?【答案】(1),,;(2)B款智能玩具飞机运行性能更好;因为B款智能玩具飞机运行时间的方差比A款智能玩具飞机运行时间的方差小,运行时间比较稳定;(3)两款智能玩具飞机运行性能在中等及以上的大约共有架.【解析】【分析】(1)由A款数据可得A款的众数,即可求出,由B款扇形数据可求得合格数及优秀数,从而求得中位数及优秀等次的百分比;(2)根据方差越小越稳定即可判断;(3)用样本数据估计总体,分别求出两款飞机中等及以上的架次相加即可.【小问1详解】解:由题意可知架A款智能玩具飞机充满电后运行最长时间中,只有出现了三次,且次数最多,则该组数据的众数为,即;由B款智能玩具飞机运行时间的扇形图可知,合格的百分比为,则B款智能玩具飞机运行时间合格的架次为:(架)则B款智能玩具飞机运行时间优等的架次为:(架)则B款智能玩具飞机的运行时间第五、第六个数据分别为:,故B款智能玩具飞机运行时间的中位数为:B款智能玩具飞机运行时间优等的百分比为:即故答案为:,,;【小问2详解】B款智能玩具飞机运行性能更好;因为B款智能玩具飞机运行时间的方差比A款智能玩具飞机运行时间的方差小,运行时间比较稳定;【小问3详解】架A款智能玩具飞机运行性能在中等及以上的架次为:(架)架A款智能玩具飞机运行性

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论