山西省大同四中联盟体2026届数学高一上期末教学质量检测试题含解析_第1页
山西省大同四中联盟体2026届数学高一上期末教学质量检测试题含解析_第2页
山西省大同四中联盟体2026届数学高一上期末教学质量检测试题含解析_第3页
山西省大同四中联盟体2026届数学高一上期末教学质量检测试题含解析_第4页
山西省大同四中联盟体2026届数学高一上期末教学质量检测试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西省大同四中联盟体2026届数学高一上期末教学质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设函数,则下列说法错误的是()A.当时,的值域为B.的单调递减区间为C.当时,函数有个零点D.当时,关于的方程有个实数解2.已知集合,则下列关系中正确的是()A. B.C. D.3.若函数()在有最大值无最小值,则的取值范围是()A. B.C. D.4.对于两条平行直线和圆的位置关系定义如下:若两直线中至少有一条与圆相切,则称该位置关系为“平行相切”;若两直线都与圆相离,则称该位置关系为“平行相离”;否则称为“平行相交”.已知直线,与圆的位置关系是“平行相交”,则实数的取值范围为A. B.C. D.5.“”是“的最小正周期为”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件6.已知函数,则函数的零点所在区间为()A.(0,1) B.(1,2)C.(2,3) D.(3,4)7.已知函数,则()A.﹣1 B.C. D.38.已知,则等于()A. B.C. D.9.如图,在中,已知为上一点,且满足,则实数值为A. B.C. D.10.如图所示的时钟显示的时刻为,此时时针与分针的夹角为.若一个半径为的扇形的圆心角为,则该扇形的面积为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.两圆x2+y2+6x-4y+9=0和x2+y2-6x+12y-19=0的位置关系是___________________.12.函数的单调递增区间为________________.13.写出一个同时具有下列性质的函数___________.①是奇函数;②在上为单调递减函数;③.14.已知,则函数的最大值是__________15._____.16.已知函数()①当时的值域为__________;②若在区间上单调递增,则的取值范围是__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.改革开放四十周年纪念币从2018年12月5日起可以开始预约通过市场调查,得到该纪念章每1枚的市场价单位:元与上市时间单位:天的数据如下:上市时间x天81032市场价y元826082根据上表数据,从下列函数:;;中选取一个恰当的函数刻画改革开放四十周年纪念章的市场价y与上市时间x的变化关系并说明理由利用你选取的函数,求改革开放四十周年纪念章市场价最低时的上市天数及最低的价格18.在平面直角坐标系xOy中,已知圆x2+y2-12x+32=0的圆心为Q,过点P(0,2)且斜率为k的直线l与圆Q相交于不同的两点A,B,记AB的中点为E(Ⅰ)若AB的长等于,求直线l的方程;(Ⅱ)是否存在常数k,使得OE∥PQ?如果存在,求k值;如果不存在,请说明理由19.如图所示四棱锥中,底面,四边形中,,,,求四棱锥的体积;求证:平面;在棱上是否存在点异于点,使得平面,若存在,求的值;若不存在,说明理由20.完成下列两个小题(1)角为第三象限的角,若,求的值;(2)已知角为第四象限角,且满足,则的值21.已知集合,(1)当时,求;(2)若,求的取值范围

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】利用二次函数和指数函数的值域可判断A选项;利用二次函数和指数函数的单调性可判断B选项;利用函数的零点个数求出的取值范围,可判断C选项;解方程可判断D选项.【详解】选项A:当时,当时,,当时,,当时,,综上,函数的值域为,故A正确;选项B:当时,的单调递减区间为,当时,函数为单调递增函数,无单调减区间,所以函数的单调递减为,故B正确;选项C:当时,令,解得或(舍去),当时,要使有解,即在上有解,只需求出的值域即可,当时,,且函数在上单调递减,所以此时的范围为,故C错误;选项D:当时,,即,即,解得或,当,时,,则,即,解得,所以当时,关于的方程有个实数解,故D正确.故选:C.2、C【解析】利用元素与集合、集合与集合的关系可判断各选项的正误.详解】∵,∴,所以选项A、B、D错误,由空集是任何集合的子集,可得选项C正确.故选:C.【点睛】本题考查元素与集合、集合与集合关系的判断,属于基础题.3、B【解析】求出,根据题意结合正弦函数图象可得答案.【详解】∵,∴,根据题意结合正弦函数图象可得,解得.故选:B.4、D【解析】根据定义先求出l1,l2与圆相切,再求出l1,l2与圆外离,结合定义即可得到答案.【详解】圆C的标准方程为(x+1)2+y2=b2.由两直线平行,可得a(a+1)-6=0,解得a=2或a=-3.当a=2时,直线l1与l2重合,舍去;当a=-3时,l1:x-y-2=0,l2:x-y+3=0.由l1与圆C相切,得,由l2与圆C相切,得.当l1、l2与圆C都外离时,.所以,当l1、l2与圆C“平行相交”时,b满足,故实数b的取值范围是(,)∪(,+∞)故选D.5、A【解析】根据函数的最小正周期求得,再根据充分条件和必要条件的定义即可的解.【详解】解:由的最小正周期为,可得,所以,所以“”是“的最小正周期为”的充分不必要条件.故选:A.6、B【解析】先分析函数的单调性,进而结合零点存在定理,可得函数在区间上有一个零点【详解】解:函数在上为增函数,又(1),(2),函数在区间上有一个零点,故选:7、C【解析】先计算,再代入计算得到答案.【详解】,则故选:【点睛】本题考查了分段函数的计算,意在考查学生的计算能力.8、A【解析】利用换元法设,则,然后利用三角函数的诱导公式进行化简求解即可【详解】设,则,则,则,故选:9、B【解析】所以,所以。故选B。10、C【解析】求出的值,利用扇形的面积公式可求得扇形的面积.【详解】由图可知,,所以该扇形的面积故选:C.二、填空题:本大题共6小题,每小题5分,共30分。11、外切【解析】先把两个圆的方程变为标准方程,分别得到圆心坐标和半径,然后利用两点间的距离公式求出两个圆心之间的距离与半径比较大小来判别得到这两个圆的位置关系【详解】由x2+y2+6x-4y+9=0得:(x+3)2+(y-2)2=4,圆心O(-3,2),半径为r=2;由x2+y2-6x+12y-19=0得:(x-3)2+(y+6)2=64,圆心P(3,-6),半径为R=8则两个圆心的距离,所以两圆的位置关系是:外切即答案为外切【点睛】本题考查学生会利用两点间的距离公式求两点的距离,会根据两个圆心之间的距离与半径相加相减的大小比较得到圆与圆的位置关系12、【解析】函数由,复合而成,求出函数的定义域,根据复合函数的单调性即可得结果.【详解】函数由,复合而成,单调递减令,解得或,即函数的定义域为,由二次函数的性质知在是减函数,在上是增函数,由复合函数的单调性判断知函数的单调递增区间,故答案为.【点睛】本题考查用复合函数的单调性求单调区间,此题外层是一对数函数,故要先解出函数的定义域,在定义域上研究函数的单调区间,这是本题易失分点,切记!13、(答案不唯一,符合条件即可)【解析】根据三个性质结合图象可写出一个符合条件的函数解析式【详解】是奇函数,指数函数与对数函数不具有奇偶性,幂函数具有奇偶性,又在上为单调递减函数,同时,故可选,且为奇数,故答案为:14、【解析】由函数变形为,再由基本不等式求得,从而有,即可得到答案.【详解】∵函数∴由基本不等式得,当且仅当,即时取等号.∴函数的最大值是故答案为.【点睛】本题主要考查线性规划的应用以及基本不等式的应用,.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用或时等号能否同时成立).15、【解析】利用诱导公式变形,再由两角和的余弦求解【详解】解:,故答案为【点睛】本题考查诱导公式的应用,考查两角和的余弦,是基础题16、①.②.【解析】当时,分别求出两段函数的值域,取并集即可;若在区间上单调递增,则有,解之即可得解.【详解】解:当时,若,则,若,则,所以当时的值域为;由函数(),可得函数在上递增,在上递增,因为在区间上单调递增,所以,解得,所以若在区间上单调递增,则的取值范围是.故答案为:;.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)上市天数为20时,市场价最低,最低价格为10元【解析】根据函数单调性选择模型;求出函数解析式,利用二次函数的性质得出最小值【详解】由表格可知随着上市时间的增加,市场价y先减少,后增大,而函数和均为单调函数,显然不符合题意;故选择函数模型把,,代入得:,解得:,∴∴上市天数为20时,市场价最低,最低价格为10元【点睛】本题主要考查了函数模型的选择与应用,二次函数在实际中的应用,属于中档题18、(Ⅰ)y=-+2或y=-x+2;(Ⅱ)不存在实数满足题意【解析】(Ⅰ)待定系数法,设出直线,再根据已知条件列式,解出即可;(Ⅱ)假设存在常数,将转化斜率相等,联立直线与圆,根据韦达定理,由直线与圆相交可求得范围.由斜率相等可求得的值,从而可判断结论【详解】(Ⅰ)圆Q的方程可写成(x-6)2+y2=4,所以圆心为Q(6,0)设过P(0,2)且斜率为k的直线方程为y=kx+2∵|AB|=,∴圆心Q到直线l的距离d==,∴=,即22k2+15k+2=0,解得k=-或k=-所以,满足题意的直线l方程为y=-+2或y=-x+2(Ⅱ)将直线l的方程y=x+2代入圆方程得x2+(kx+2)2-12x+32=0整理得(1+k2)x2+4(k-3)x+36=0.①直线与圆交于两个不同的点A,B等价于△=[4(k-3)2]-4×36(1+k2)=42(-8k2-6k)>0,解得-<k<0,即k的取值范围为(-,0)设A(x1,y1),B(x2,y2),则AB的中点E(x0,y0)满足x0==-,y0=kx0+2=∵kPQ==-,kOE==-,要使OE∥PQ,必须使kOE=kPQ=-,解得k=-,但是k∈(-,0),故没有符合题意的常数k【点睛】本题考查了圆的标准方程及弦长计算,还考查了直线与圆相交知识,直线平行知识,中点坐标公式,韦达定理的应用,考查了转化思想,属中档题19、(1)4;(2)见解析;(3)不存在.【解析】利用四边形是直角梯形,求出,结合底面,利用棱锥的体积公式求解即可求;先证明,,结合,利用线面垂直的判定定理可得平面;用反证法证明,假设存在点异于点使得平面证明平面平面,与平面与平面相交相矛盾,从而可得结论【详解】显然四边形ABCD是直角梯形,又底面平面ABCD,平面ABCD,在直角梯形ABCD中,,,,即又,平面;不存在,下面用反证法进行证明假设存在点异于点使得平面PAD,且平面PAD,平面PAD,平面PAD又,平面平面PAD而平面PBC与平面PAD相交,得出矛盾【点睛】本题考查直线与平面垂直的判定,棱锥的体积,平面与平面平行的判定定理,考查空间想象能力,逻辑推理能力.证明直线和平面垂直的常用方法有:(1)利用判定定理;(2)利用判定定理的推论;(3)利用面面平行的性质;(4)利用面面垂直的性质,当两个平面垂直时,在一个平面内垂直于交线的直线垂直于另一个平面.20、(1);(2).【解析】

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论