上海市静安区新中高级中学2026届高一数学第一学期期末学业质量监测试题含解析_第1页
上海市静安区新中高级中学2026届高一数学第一学期期末学业质量监测试题含解析_第2页
上海市静安区新中高级中学2026届高一数学第一学期期末学业质量监测试题含解析_第3页
上海市静安区新中高级中学2026届高一数学第一学期期末学业质量监测试题含解析_第4页
上海市静安区新中高级中学2026届高一数学第一学期期末学业质量监测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海市静安区新中高级中学2026届高一数学第一学期期末学业质量监测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列各选项中的两个函数的图象关于y轴对称的是()A.与 B.与C.与 D.与2.已知函数,若实数满足,则实数的取值范围是()A. B.C. D.3.已知奇函数在上单调递减,且,则不等式的解集为()A. B.C. D.4.已知命题,则命题的否定为()A. B.C. D.5.若直线与直线垂直,则()A.6 B.4C. D.6.函数的零点所在的一个区间是()A. B.C. D.7.对于空间中的直线,以及平面,,下列说法正确的是()A.若,,,则B.若,,,则C.若,,,则D.若,,,则8.角度化成弧度为()A. B.C. D.9.下列几何体中是棱柱的有()A.1个 B.2个C.3个 D.4个10.直线与直线平行,则的值为()A. B.2C. D.0二、填空题:本大题共6小题,每小题5分,共30分。11.设集合,,若,则实数的取值范围是________12.函数的值域是____________,单调递增区间是____________.13.若定义域为的函数满足:对任意能构成三角形三边长的实数,均有,,也能构成三角形三边长,则m的最大值为______.(是自然对数的底)14.函数的值域为_____________15.向量与,则向量在方向上的投影为______16.已知函数,则=____________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,(1)求证:为奇函数;(2)若恒成立,求实数的取值范围;(3)解关于的不等式18.如图,在直三棱柱ABC﹣A1B1C1中,∠ACB=90°,AC=BC=2,D,E分别为棱AB,BC的中点,M为棱AA1的中点(1)证明:A1B1⊥C1D;(2)若AA1=4,求三棱锥A﹣MDE的体积19.已知.(1)求函数的最小正周期及在区间的最大值;(2)若,求的值.20.已知函数.(1)证明为奇函数;(2)若在上为单调函数,当时,关于的方程:在区间上有唯一实数解,求的取值范围.21.已知函数的最小正周期为,函数的最大值是,最小值是.(1)求、、的值;(2)指出的单调递增区间.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】根据题意,逐一分析各选项中两个函数的对称性,再判断作答.【详解】对于A,点是函数图象上任意一点,显然在的图象上,而点与关于y轴对称,则与的图象关于y轴对称,A正确;对于B,点是函数图象上任意一点,显然在的图象上,而点与关于原点对称,则与的图象关于原点对称,B不正确;对于C,点是函数图象上任意一点,显然在的图象上,而点与关于x轴对称,则与的图象关于x轴对称,C不正确;对于D,点是函数图象上任意一点,显然在的图象上,而点与关于直线y=x对称,则与的图象关于直线y=x对称,D不正确.故选:A2、D【解析】由题可得函数关于对称,且在上单调递增,在上单调递减,进而可得,即得.【详解】∵函数,定义域为,又,所以函数关于对称,当时,单调递增,故函数单调递增,∴函数在上单调递增,在上单调递减,由可得,,解得,且.故选:D.3、A【解析】由题意可得在单调递减,且,从而可得当或时,,当或时,,然后分和求出不等式的解集【详解】因为奇函数在上单调递减,且,所以在单调递减,且,所以当或时,,当或时,,当时,不等式等价于,所以或,解得,当时,不等式等价于,所以或,解得或,综上,不等式的解集为,故选:A4、D【解析】由特称(存在)量词命题的否定是全称量词命题直接可得.【详解】由特称(存在)量词命题的否定是全称量词命题直接可得:命题的否定为:.故选:D5、A【解析】由两条直线垂直的条件可得答案.【详解】由题意可知,即故选:A.6、B【解析】判断函数的单调性,再借助零点存在性定理判断作答.【详解】函数在R上单调递增,而,,所以函数的零点所在区间为.故选:B7、D【解析】利用线面关系,面面关系的性质逐一判断.【详解】解:对于A选项,,可能异面,故A错误;对于B选项,可能有,故B错误;对于C选项,,的夹角不一定为90°,故C错误;故对D选项,因为,,故,因为,故,故D正确.故选:D.【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,是中档题.8、A【解析】根据题意,结合,即可求解.【详解】根据题意,.故选:A.9、C【解析】根据棱柱的定义进行判断即可【详解】棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱,观察图形满足棱柱概念的几何体有:①③⑤,共三个故选:C【点睛】本题主要考查棱柱的概念,属于简单题.10、B【解析】根据两直线平行的条件列式可得结果.【详解】当时,直线与直线垂直,不合题意;当时,因直线与直线平行,所以,解得.故选:B【点睛】易错点点睛:容易忽视纵截距不等这个条件导致错误.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】对于方程,由于,解得集合,由,根据区间端点值的关系列式求得的范围【详解】解:对于,由于,,,;∴∵,集合,∴解得,,则实数的取值范围是故答案为:12、①.②.【解析】先求二次函数值域,再根据指数函数单调性求函数值域;根据二次函数单调性与指数函数单调性以及复合函数单调性法则求函数增区间.【详解】因为,所以,即函数的值域是因为单调递减,在(1,+)上单调递减,因此函数的单调递增区间是(1,+).【点睛】本题考查复合函数值域与单调性,考查基本分析求解能力.13、##【解析】不妨设三边的大小关系为:,利用函数的单调性,得出,,的大小关系,作为三角形三边则有任意两边之和大于第三边,再利用基本不等式求出边的范围得出的最大值即可.【详解】在上严格增,所以,不妨设,因为对任意能构成三角形三边长的实数,均有,,也能构成三角形三边长,所以,因为,所以,因为对任意都成立,所以,所以,所以,所以,所以m的最大值为故答案为:.14、【解析】利用二倍角余弦公式可得令,结合二次函数的图象与性质得到结果.【详解】由题意得:令,则∵在上单调递减,∴的值域为:故答案为:【点睛】本题给出含有三角函数式的“类二次”函数,求函数的值域.着重考查了三角函数的最值和二次函数在闭区间上的值域等知识,属于中档题15、【解析】在方向上的投影为考点:向量的投影16、【解析】由函数解析式,先求得,再求得代入即得解.【详解】函数,则==,故答案为.【点睛】本题考查函数值的求法,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)(3)【解析】(1)求得的定义域,计算,与比较可得;(2)原不等式等价为对恒成立,运用基本不等式可得最小值,进而得到所求范围;(3)原不等式等价为,设,判断其单调性可得的不等式,即可求出.【小问1详解】函数,由解得或,可得定义域,关于原点对称,因为,所以是奇函数;【小问2详解】由或,解得,所以恒成立,即,则,即对恒成立,因为,当且仅当,即时等号成立,所以,即的取值范围为;【小问3详解】不等式即为,设,即,可得在上递减,所以,则,解得,所以不等式的解集为.18、(1)证明见解析(2)【解析】(1)通过证明AB⊥CD,AB⊥CC1,证明A1B1⊥平面CDC1,然后证明A1B1⊥C1D;(2)求出底面△DCE的面积,求出对应的高,即点到底面DCE的距离,然后求解四面体M-CDE的体积,由三棱锥A﹣MDE的体积就是三棱锥M﹣CDE的体积得结论.【详解】(1)证明:∵∠ACB=90°,AC=BC=2,∴AB⊥CD,AB⊥CC1,CD∩CC1=C,∴AB⊥平面CDC1,∵A1B1∥AB,∴A1B1⊥平面CDC1,∵C1D平面CDC1,∴A1B1⊥C1D;(2)解:三棱锥A﹣MDE的体积就是三棱锥M﹣CDE的体积,AC=BC=2,D,E分别为棱AB,BC的中点,M为棱AA1的中点.AA1=4,所以AM=2,AB⊥CD,三棱锥A﹣MDE的体积:【点睛】本题考查线面垂直,考查点到面的距离,解题的关键是利用线面垂直证明线线线垂直,利用等体积法求点到面的距离,是中档题19、(1)1;(2)【解析】(1)化简得f(x)=sin(2x),求出函数的最小正周期以及最大值;(2)由(1)知,,考虑x0的取值范围求出cos(2x0)的值,求出的值【详解】解:(1)∴,∴函数的最小正周期为T=π;∵

,故

单调增,单调减∴

所以

在区间的最大值是1.(2)∵,,∴,又所以,故【点睛】本题考查了三角函数的求值问题以及三角函数的图象与性质的应用问题,解题时应细心作答,以免出错,是基础题20、(1)证明见解析(2)【解析】(1)先求函数的定义域,再根据的关系可证明奇偶性;(2)根据单调性及奇函数性质,有,再通过换元,转化为二次函数,通过区间分类讨论可求解.【小问1详解】对任意的,,则对任意的恒成立,所以,函数的定义域为,∴,∴,故函数为奇函数;【小问2详解】∵函数为奇函数且在上的单调函数,∴由可得,其中,设,则,则.∵则,若关于的方程在上只有一个实根,则或.所以,令,其中.所以,函数在时单调递增.①若函数在内有且只有一个零点,在内无零点.则,解得;②若为函数的唯一零点,则,解得,∵,则.且当时,设函数的另一个零点为,则,可得,符合题意.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论