绥化市重点中学2026届数学高二上期末学业质量监测试题含解析_第1页
绥化市重点中学2026届数学高二上期末学业质量监测试题含解析_第2页
绥化市重点中学2026届数学高二上期末学业质量监测试题含解析_第3页
绥化市重点中学2026届数学高二上期末学业质量监测试题含解析_第4页
绥化市重点中学2026届数学高二上期末学业质量监测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

绥化市重点中学2026届数学高二上期末学业质量监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在等差数列中,,则的公差为()A.1 B.2C.3 D.42.已知双曲线的一条渐近线方程为,且与椭圆有公共焦点.则C的方程为()A. B.C. D.3.下列命题为真命题的是()A.若,则 B.若,则C.若,则 D.若,则4.如图所示,在中,,,,AD为BC边上的高,;若,则的值为()A. B.C. D.5.设,命题“若,则或”的否命题是()A.若,则或B.若,则或C.若,则且D.若,则且6.已知双曲线,过点作直线l与双曲线交于A,B两点,则能使点P为线段AB中点的直线l的条数为()A.0 B.1C.2 D.37.已知双曲线C:(,)的一条渐近线被圆所截得的弦长为2,的C的离心率为()A. B.C.2 D.8.已知圆的方程为,直线:恒过定点,若一条光线从点射出,经直线上一点反射后到达圆上的一点,则的最小值是()A.3 B.4C.5 D.69.设x∈R,则x<3是0<x<3的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件10.已知等比数列,且,则()A.16 B.32C.24 D.6411.在中,已知角A,B,C所对边为a,b,c,,,,则()A. B.C. D.112.设是空间一定点,为空间内任一非零向量,满足条件的点构成的图形是()A.圆 B.直线C.平面 D.线段二、填空题:本题共4小题,每小题5分,共20分。13.设O为坐标原点,抛物线的焦点为F,P为抛物线上一点,若,则的面积为____________14.数列的前n项和满足:,则________15.若抛物线上一点到其准线的距离为4,则抛物线的标准方程为___________.16.以双曲线的右焦点为圆心,为半径的圆与的一条渐近线交于两点,若,则双曲线的离心率为_________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的离心率为,右焦点为F,点A(a,0),且|AF|=1(1)求椭圆C的方程;(2)过点F的直线l(不与x轴重合)交椭圆C于点M,N,直线MA,NA分别与直线x=4交于点P,Q,求∠PFQ的大小18.(12分)已知是公差不为零等差数列,,且、、成等比数列(1)求数列的通项公式:(2)设.数列{}的前项和为,求证:19.(12分)已知是公差不为0的等差数列,其前项和为,,且,,成等比数列.(1)求和;(2)若,数列的前项和为,且对任意的恒成立,求实数的取值范围.20.(12分)已知数列,若_________________(1)求数列的通项公式;(2)求数列的前项和从下列三个条件中任选一个补充在上面的横线上,然后对题目进行求解①;②,,;③,点,在斜率是2的直线上21.(12分)已知双曲线的两个焦点为的曲线C上.(1)求双曲线C的方程;(2)记O为坐标原点,过点Q(0,2)的直线l与双曲线C相交于不同的两点E、F,若△OEF的面积为求直线l的方程22.(10分)双曲线的离心率为2,经过C的焦点垂直于x轴的直线被C所截得的弦长为12.(1)求C的方程;(2)设A,B是C上两点,线段AB的中点为,求直线AB的方程.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据等差数列性质可得方程组,求得公差.【详解】等差数列中,,,由通项公式可得解得故选:A2、B【解析】根据已知和渐近线方程可得,双曲线焦距,结合的关系,即可求出结论.【详解】因为双曲线的一条渐近线方程为,则①.又因为椭圆与双曲线有公共焦点,双曲线的焦距,即c=3,则a2+b2=c2=9②.由①②解得a=2,b=,则双曲线C的方程为.故选:B.3、D【解析】通过举反列即可得ABC错误,利用不等式性质可判断D【详解】A.当时,,但,故A错;B.当时,,故B错;C.当时,,但,故C错;D.若,则,D正确故选:D4、B【解析】根据题意求得,化简得到,结合,求得的值,即可求解.【详解】在中,,,,AD为BC边上的高,可得,由又因为,所以,所以.故选:B.5、C【解析】根据否命题的定义直接可得.【详解】根据否命题的定义可得命题“若,则或”的否命题是若,则且,故选:C.6、A【解析】先假设存在这样的直线,分斜率存在和斜率不存在设出直线的方程,当斜率k存在时,与双曲线方程联立,消去,得到关于的一元二次方程,直线与双曲线相交于两个不同点,则,,又根据是线段的中点,则,由此求出与矛盾,故不存在这样的直线满足题意;当斜率不存在时,过点的直线不满足条件,故符合条件的直线不存在.详解】设过点的直线方程为或,①当斜率存在时有,得(*)当直线与双曲线相交于两个不同点,则必有:,即又方程(*)的两个不同的根是两交点、的横坐标,又为线段的中点,,即,,使但使,因此当时,方程①无实数解故过点与双曲线交于两点、且为线段中点的直线不存在②当时,经过点的直线不满足条件.综上,符合条件的直线不存在故选:A7、C【解析】由双曲线的方程可得渐近线的直线方程,根据直线和圆相交弦长可得圆心到直线的距离,进而可得,结合,可得离心率.【详解】双曲线的一条渐近线方程为,即,被圆所截得的弦长为2,所以圆心到直线的距离为,,解得,故选:C【点睛】本题考查了双曲线的渐近线和离心率、直线和圆的相交弦、点到直线距离等基本知识,考查了运算求解能力和逻辑推理能力,转化的数学思想,属于一般题目.8、B【解析】求得定点,然后得到关于直线对称点为,然后可得,计算即可.【详解】直线可化为,令解得所以点的坐标为.设点关于直线的对称点为,则由,解得,所以点坐标为.由线段垂直平分线的性质可知,,所以(当且仅当,,,四点共线时等号成立),所以的最小值为4.故选:B.9、B【解析】利用充分条件、必要条件的定义可得出结论.【详解】,因此,“”是“”必要不充分条件.故选:B.10、A【解析】由等比数列的定义先求出公比,然后可解..【详解】,得故选:A11、B【解析】利用正弦定理求解.【详解】在中,由正弦定理得,解得,故选:B.12、C【解析】根据法向量的定义可判断出点所构成的图形.【详解】是空间一定点,为空间内任一非零向量,满足条件,所以,构成的图形是经过点,且以为法向量的平面.故选:C.【点睛】本题考查空间中动点的轨迹,考查了法向量定义的理解,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据抛物线定义求出点坐标,即可求出面积.【详解】由题可得,设,则由抛物线定义可得,解得,代入抛物线方程可得,所以.故答案为:.14、【解析】利用“当时,;当时,"即可得出.【详解】当时,当时,,不适合上式,数列的通项公式.故答案为:.15、【解析】先由抛物线的方程求出准线的方程,然后根据点到准线的距离可求,进而可得抛物线的标准方程.【详解】抛物线的准线方程为,点到其准线的距离为,由题意可得,解得,故抛物线的标准方程为.故答案为:.16、【解析】由题意可得,化简整理得到,进而可求出结果.【详解】因为双曲线的一个焦点到其一条渐近线为,所有由题意可得,即,则,所以离心率,故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)∠PFQ=90°【解析】(1)由题意得求出a,c,然后求解b,即可得到椭圆方程(2)当直线l的斜率不存在时,验证,即∠PFQ=90°.当直线l的斜率存在时,设l:y=k(x﹣1),其中k≠0.联立得(4k2+3)x2﹣8k2x+4k2﹣12=0.由题意,知Δ>0恒成立,设M(x1,y1),N(x2,y2),利用韦达定理,结合直线MA的方程为.求出、.利用向量的数量积,转化求解即可【小问1详解】由题意得解得a=2,c=1,从而,所以椭圆C的方程为【小问2详解】当直线l的斜率不存在时,有,,P(4,﹣3),Q(4,3),F(1,0),则,,故,即∠PFQ=90°当直线l的斜率存在时,设l:y=k(x﹣1),其中k≠0联立得(4k2+3)x2﹣8k2x+4k2﹣12=0由题意,知Δ>0恒成立,设M(x1,y1),N(x2,y2),则,直线MA的方程为,令x=4,得,即,同理可得所以,因为0,所以∠PFQ=90°综上,∠PFQ=90°18、(1);(2)证明见解析.【解析】(1)设等差数列的公差为,则,根据题意可得出关于的方程,求出的值,利用等差数列的通项公式可求得数列的通项公式;(2)求得,利用裂项相消法求出,即可证得结论成立.【小问1详解】解:设等差数列的公差为,则,由题意可得,即,整理可得,,解得,因此,.【小问2详解】证明:,因此,,故原不等式得证.19、(1),;(2).【解析】(1)求出,即得数列的和;(2)由题得,再利用分组求和求出,得到,令,判断函数的单调性得解.【详解】(1)设数列的公差为,由已知得,,即,整理得,又,,;(2)由题意:,,,令,则,即对任意的恒成立,是单调递增数列,,只需,所以.【点睛】方法点睛:求数列的最值,常用数列的单调性求解,求数列的单调性,一般利用定义法作差或作商判断.20、答案见解析.【解析】(1)若选①,根据通项公式与前项和的关系求解通项公式即可;若选②,根据可得数列为等差数列,利用基本量法求解通项公式即可;若选③,根据两点间的斜率公式可得,可得数列为等差数列进而求得通项公式;(2)利用裂项相消求和即可【详解】解:(1)若选①,由,所以当,,两式相减可得:,而在中,令可得:,符合上式,故若选②,由(,)可得:数列为等差数列,又因为,,所以,即,所以若选③,由点,在斜率是2的直线上得:,即,所以数列为等差数列且(2)由(1)知:,所以21、(1)双曲线方程为(2)满足条件的直线l有两条,其方程分别为y=和【解析】(1)由双曲线焦点可得值,进而可得到的关系式,将点P代入双曲线可得到的关系式,解方程组可求得值,从而确定双曲线方程;(2)求直线方程采用待定系数法,首先设出方程的点斜式,与双曲线联立,求得相交的弦长和O到直线的距离,代入面积公式可得到直线的斜率,求得直线方程试题解析:(1)由已知及点在双曲线上得解得;所以,双曲线的方程为(2)由题意直线的斜率

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论