版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
贵州省遵义市第十八中学2026届高二数学第一学期期末达标检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.圆的圆心到直线的距离为2,则()A. B.C. D.22.已知数列满足,,数列的前n项和为,若,,成等差数列,则n=()A.6 B.8C.16 D.223.直线的倾斜角,则其斜率的取值范围为()A. B.C. D.4.将直线绕着原点逆时针旋转,得到新直线的斜率是()A. B.C. D.5.已知函数的图象如图所示,则其导函数的图象大致形状为()A. B.C. D.6.若直线与曲线有公共点,则b的取值范围是()A. B.C. D.7.已知,则下列说法错误的是()A.若,分别是直线,的方向向量,则直线,所成的角的余弦值是B.若,分别是直线l的方向向量与平面的法向量,则直线l与平面所成的角的正弦值是C.若,分别是平面,的法向量,则平面,所成的角的余弦值是D.若,分别是直线l的方向向量与平面的法向量,则直线l与平面所成的角的正弦值是8.已知命题P:,,则命题P的否定为()A., B.,C., D.,9.已知双曲线,过其右焦点作渐近线的垂线,垂足为,延长交另一条渐近线于点A.已知为原点,且,则()A. B.C. D.10.已知椭圆方程为:,则其离心率为()A. B.C. D.11.若构成空间的一个基底,则下列向量能构成空间的一个基底的是()A.,, B.,,C.,, D.,,12.椭圆中以点为中点的弦所在直线斜率为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知曲线,则曲线在点处的切线方程为____________.14.命题“,”是真命题,则的取值范围是________15.如图,PD垂直于正方形ABCD所在平面,AB=2,E为PB的中点,cos〈,〉=,若以DA,DC,DP所在直线分别为x,y,z轴建立空间直角坐标系,则点E的坐标为________16.以双曲线的右焦点为圆心,为半径的圆与的一条渐近线交于两点,若,则双曲线的离心率为_________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知两圆x2+y2-2x-6y-1=0.x2+y2-10x-12y+m=0(1)m取何值时两圆外切?(2)m取何值时两圆内切?(3)当m=45时,求两圆公共弦所在直线的方程和公共弦的长18.(12分)已知圆C的圆心在直线上,且过点,(1)求圆C的方程;(2)若圆C与直线交于A,B两点,______,求m的值从下列三个条件中任选一个补充在上面问题中并作答:条件①:;条件②:圆上一点P到直线的最大距离为;条件③:19.(12分)经观测,某公路段在某时段内的车流量(千辆/小时)与汽车的平均速度(千米/小时)之间有函数关系:(1)在该时段内,当汽车的平均速度为多少时车流量最大?最大车流量为多少?(精确到)(2)为保证在该时段内车流量至少为千辆/小时,则汽车的平均速度应控制在什么范围内?20.(12分)在平面直角坐标系中,已知点,,点满足,记点的轨迹为.(1)求的方程;(2)已知,是经过圆上一点且与相切的两条直线,斜率分别为,,直线的斜率为,求证:为定值.21.(12分)已知圆,直线的斜率为2,且过点(1)判断与的位置关系;(2)若圆,求圆与圆的公共弦长22.(10分)在①直线l:是抛物线C的准线;②F是椭圆的一个焦点;③,对于C上的点A,的最小值为;在以上三个条件中任选一个,填到下面问题中的横线处,并完成解答.已知抛物线C:的焦点为F,满足_____(1)求抛物线C的标准方程;(2)是抛物线C上在第一象限内的一点,直线:与C交于M,N两点,若的面积为,求m的值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】配方求出圆心坐标,再由点到直线距离公式计算【详解】圆的标准方程是,圆心为,∴,解得故选:B.【点睛】本题考查圆的标准方程,考查点到直线距离公式,属于基础题2、D【解析】利用累加法求得列的通项公式,再利用裂项相消法求得数列的前n项和为,再根据,,成等差数列,得,从而可得出答案.【详解】解:因为,且,所以当时,,因为也满足,所以.因为,所以.若,,成等差数列,则,即,得.故选:D.3、B【解析】根据倾斜角和斜率的关系,确定正确选项.【详解】直线的倾斜角为,则斜率为,在上为增函数.由于直线的倾斜角,所以其斜率的取值范围为,即.故选:B【点睛】本小题主要考查倾斜角和斜率的关系,属于基础题.4、B【解析】由题意知直线的斜率为,设其倾斜角为,将直线绕着原点逆时针旋转,得到新直线的斜率为,化简求值即可得到答案.【详解】由知斜率为,设其倾斜角为,则,将直线绕着原点逆时针旋转,则故新直线的斜率是.故选:B.5、A【解析】利用f(x)先单调递增的速度由快到慢,再由慢到快,结合导数的几何意义判断即可.【详解】由f(x)的图象可知,函数f(x)先单调递增的速度由快到慢,再由慢到快,由导数的几何意义可知,先减后增,且恒大于0,故符合题意的只有选项A.故选:A.6、D【解析】将本题转化为直线与半圆的交点问题,数形结合,求出的取值范围【详解】将曲线的方程化简为即表示以为圆心,以2为半径的一个半圆,如图所示:当直线经过时最大,即,当直线与下半圆相切时最小,由圆心到直线距离等于半径2,可得:解得(舍去),或结合图象可得故选:D.7、D【解析】利用空间角的意义结合空间向量求空间角的方法逐一分析各选项即可判断作答.【详解】对于A,因分别是直线的方向向量,且,直线所成的角为,则,A正确;对于B,D,因分别是直线l的方向向量与平面的法向量,且,直线l与平面所成的角为,则有,B正确,D错误;对于C,因分别是平面的法向量,且,平面所成的角为,则不大于,,C正确.故选:D8、B【解析】根据特称命题的否定变换形式即可得出结果【详解】命题:,,则命题的否定为,故选:B9、C【解析】画出图象,结合渐近线方程得到,,进而得到,结合渐近线的斜率及角度关系,列出方程,求出,从而求出.【详解】渐近线为,如图,过点F作FB垂直于点B,交于点A,则到渐近线距离为,则,又,由勾股定理得:,则,又,,所以,解得:,所以.故选:C10、B【解析】根据椭圆的标准方程,确定,计算离心率即可.【详解】由知,,,,即,故选:B11、B【解析】由空间向量内容知,构成基底的三个向量不共面,对选项逐一分析【详解】对于A:,因此A不满足题意;对于B:根据题意知道,,不共面,而和显然位于向量和向量所成平面内,与向量不共面,因此B正确;对于C:,故C不满足题意;对于D:显然有,选项D不满足题意.故选:B12、A【解析】先设出弦的两端点的坐标,分别代入椭圆方程,两式相减后整理即可求得弦所在的直线的斜率【详解】设弦的两端点为,,代入椭圆得两式相减得,即,即,即,即,弦所在的直线的斜率为,故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】求解导函数,然后根据导数的几何意义求出切线斜率,并计算,利用点斜式写出切线方程.【详解】,由题意,切线的斜率为,,所以曲线在点处的切线方程为,即.故答案为:14、【解析】依题意可得,是真命题,参变分离得到在上有解,再利用构造函数利用函数的单调性计算可得.【详解】,等价于在上有解设,,则在上单调递减,在上单调递增,又,,所以,即故答案为:15、(1,1,1)【解析】设PD=a,则D(0,0,0),A(2,0,0),B(2,2,0),P(0,0,a),E(1,1,),∴=(0,0,a),=(-1,1,)由cos〈,〉=,∴=a·,∴a=2.∴E的坐标为(1,1,1)16、【解析】由题意可得,化简整理得到,进而可求出结果.【详解】因为双曲线的一个焦点到其一条渐近线为,所有由题意可得,即,则,所以离心率,故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)(3)直线方程为4x+3y-23=0,弦长为【解析】(1)先把两个圆的方程化为标准形式,求出圆心和半径,再根据两圆的圆心距等于两圆的半径之和,求得m的值;(2)由两圆的圆心距等于两圆的半径之差为,求得m的值.(3)当m=45时,把两个圆的方程相减,可得公共弦所在的直线方程.求出第一个圆的圆心(1,3)到公共弦所在的直线的距离d,再利用弦长公式求得弦长试题解析:(1)由已知可得两个圆的方程分别为(x-1)2+(y-3)2=11、(x-5)2+(y-6)2=61-m,两圆的圆心距d==5,两圆的半径之和为+,由两圆的半径之和为+=5,可得m=(2)由两圆的圆心距d=="5"等于两圆的半径之差为|-|,即|-|=5,可得-="5"(舍去),或-=-5,解得m=(3)当m=45时,两圆的方程分别为(x-1)2+(y-3)2=11、(x-5)2+(y-6)2=16,把两个圆的方程相减,可得公共弦所在的直线方程为4x+3y-23=0第一个圆的圆心(1,3)到公共弦所在的直线的距离为d==2,可得弦长为考点:1.两圆相切的位置关系;2.两圆相交的公共弦问题18、(1)(2)【解析】(1)根据圆心在过点,的线段的中垂线上,同时圆心圆心在直线上,可求出圆心的坐标,进而求得半径,最后求出其标准方程;(2)选①利用用垂径定理可求得答案,选②根据圆上一点P到直线的最大距离为可求得答案,选③先利用向量的数量积可求得,解法就和选①时相同.【小问1详解】由题意可知,圆心在点的中垂线上,该中垂线的方程为,于是,由,解得圆心,圆C的半径所以,圆C的方程为;【小问2详解】①,因为,,所以圆心C到直线l的距离,则,解得,②,圆上一点P到直线的最大距离为,可知圆心C到直线l的距离则,解得,③,因为,所以,得,又,所以圆心C到直线l的距离,则,解得19、(1)当(千米/小时)时,车流量最大,最大值约为千辆/小时;(2)汽车的平均速度应控制在这个范围内(单位:千米/小时).【解析】(1)利用基本不等式可求得的最大值,及其对应的值,即可得出结论;(2)解不等式即可得解.【小问1详解】解:,(千辆/小时),当且仅当时,即当(千米/小时)时,车流量最大,最大值约为千辆/小时.【小问2详解】解:据题意有,即,即,解得,所以汽车的平均速度应控制在这个范围内(单位:千米/小时).20、(1);(2)证明见解析.【解析】(1)根据双曲线的定义可得答案;(2)设,过点的的切线方程为,联立此直线与双曲线的方程消元,然后由可得,即可得到,然后可证明.【小问1详解】因为,所以点的轨迹是以为焦点的双曲线的右支,所以,,所以,所以的方程为【小问2详解】设,则,设过点的切线方程为,联立可得由可得,所以所以21、(1)与相切;(2)【解析】(1)求出圆C的圆心坐标,半径和直线l的方程,根据圆心到直线的距离即可判断直线与圆的位置关系;(2)圆与圆的方程相减,可求出公共弦所在的直线方程,然后根据圆M的圆心到公共弦所在直线的距离及圆M的半径即可求出公共弦长.【小问1详解】由圆,可得,所以圆心为,半径,直线的方程为,即因为圆心到的距离为,所以与相切【小问2详解】联立方程可得,作差可得,即,即公共弦所在直线的方程为易知圆的半径,圆心到直线的距离为,则公共弦长22、(1)(2)或.【解析】(1)选条件①,由准线方程得参数,从而得抛物线方程;选条件②,由椭圆的焦点坐标与抛物线焦点坐标相同求得得抛物线方程;选条件③,由F,A,B三点共线时,,再由两点间距离公式求得得抛物线方程;(2)求出点坐标,由点到直线距离公式
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 乡镇文明礼仪规范制度
- 卫健委规范禁烟牌制度
- 全科医生接诊制度规范
- 小区排水备案制度规范
- 外籍人员规范管理制度
- 玻璃墙粘贴制度规范标准
- 供暖安全管理规范制度
- 学校场馆制度规范标准
- 医疗陪护公司制度规范
- 百货管理制度及流程规范
- DB11T 696-2023 预拌砂浆应用技术规程
- (完整word版)英语四级单词大全
- 井下作业技术油水井措施酸化课件解析
- 种子室内检验技术基础知识(种子质量检测技术课件)
- 旅游接待业 习题及答案汇总 重大 第1-10章 题库
- 智慧金库项目需求书
- DB41T 2397-2023 机关食堂反食品浪费管理规范
- 临床回顾性研究的设计与论文写作
- 锚杆框架梁框架梁边坡防护检验批质量验收记录表
- 灌溉用双轴取向硬聚氯乙烯(PVC-O)管材和连接件基本参数及技术要求
- 外伤在与疾病共同存在的案件中参与度的评判标准
评论
0/150
提交评论