2026届浙江省镇海中学高一上数学期末质量跟踪监视试题含解析_第1页
2026届浙江省镇海中学高一上数学期末质量跟踪监视试题含解析_第2页
2026届浙江省镇海中学高一上数学期末质量跟踪监视试题含解析_第3页
2026届浙江省镇海中学高一上数学期末质量跟踪监视试题含解析_第4页
2026届浙江省镇海中学高一上数学期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届浙江省镇海中学高一上数学期末质量跟踪监视试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的定义域是()A. B.C.R D.2.在中,,.若边上一点满足,则()A. B.C. D.3.若命题“,”是假命题,则实数的取值范围为()A. B.C. D.4.函数(且)与函数在同一个坐标系内的图象可能是A. B.C. D.5.已知则()A. B.C. D.6.下列函数中,与函数的定义域与值域相同的是()A.y=sinx B.C. D.7.最小值是A.-1 B.C. D.18.已知平面α和直线l,则α内至少有一条直线与l()A.异面 B.相交C.平行 D.垂直9.sin()=()A. B.C. D.10.已知,则()A.- B.C.- D.二、填空题:本大题共6小题,每小题5分,共30分。11.设,用表示不超过的最大整数.则称为高斯函数.例如:,,已知函数,则的值域为___________.12.函数的最大值是____________.13.已知函数,设,,若成立,则实数的最大值是_______14.已知,若,则_______;若,则实数的取值范围是__________15.命题“”的否定是________________.16.已知函数若,则实数___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.为适应新冠肺炎疫情长期存在的新形势,打好疫情防控的主动仗,某学校大力普及科学防疫知识,现需要在2名女生、3名男生中任选2人担任防疫宣讲主持人,每位同学当选的机会是相同的.(1)写出试验的样本空间,并求当选的2名同学中恰有1名女生的概率;(2)求当选的2名同学中至少有1名男生的概率.18.如图,直三棱柱的底面是边长为2的正三角形,分别是的中点(1)证明:平面平面;(2)若直线与平面所成的角为,求三棱锥的体积19.设集合,.(1)若,求;(2)若“”是“”的充分不必要条件,求实数m的取值范围.20.已知函数(a>0且)是偶函数,函数(a>0且)(1)求b的值;(2)若函数有零点,求a的取值范围;(3)当a=2时,若,使得恒成立,求实数m的取值范围21.已知,,函数.(1)当时,求不等式的解集;(2)若,求的最小值,并求此时a,b的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】显然这个问题需要求交集.【详解】对于:,;对于:,;故答案为:A.2、A【解析】根据向量的线性运算法则,结合题意,即可求解.【详解】由中,,且边上一点满足,如图所示,根据向量的线性运算法则,可得:.故选:A.3、A【解析】由题意知原命题为假命题,故命题的否定为真命题,再利用,即可得到答案.【详解】由题意可得“”是真命题,故或.故选:A.4、C【解析】利用指数函数和二次函数的性质对各个选项一一进行判断可得答案.【详解】解:两个函数分别为指数函数和二次函数,其中二次函数的图象过点,故排除A,D;二次函数的对称轴为直线,当时,指数函数递减,,C符合题意;当时,指数函数递增,,B不合题意,故选C【点睛】本题通过对多个图象的选择考查指数函数、二次函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及时函数图象的变化趋势,利用排除法,将不合题意选项一一排除.5、D【解析】先利用同角三角函数基本关系式求出和,然后利用两角和的余弦公式展开代入即可求出cos(α+β)【详解】∵∴∴,∴,∴故选:D6、D【解析】由函数的定义域为,值域依次对各选项判断即可【详解】解:由函数的定义域为,值域,对于定义域为,值域,,错误;对于的定义域为,值域,错误;对于的定义域为,,值域,,错误;对于的定义域为,值域,正确,故选:7、B【解析】∵,∴当sin2x=-1即x=时,函数有最小值是,故选B考点:本题考查了三角函数的有界性点评:熟练掌握二倍角公式及三角函数的值域是解决此类问题的关键,属基础题8、D【解析】若直线l∥α,α内至少有一条直线与l垂直,当l与α相交时,α内至少有一条直线与l垂直当l⊂α,α内至少有一条直线与l垂直故选D9、A【解析】直接利用诱导公式计算得到答案.【详解】故选:【点睛】本题考查了诱导公式化简,意在考查学生对于诱导公式的应用.10、D【解析】根据诱导公式可得,结合二倍角的余弦公式即可直接得出结果.【详解】由题意得,,即,所以.故选:D.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】对进行分类讨论,结合高斯函数的知识求得的值域.【详解】当为整数时,,当不是整数,且时,,当不是整数,且时,,所以的值域为.故答案为:12、【解析】把函数化为的形式,然后结合辅助角公式可得【详解】由已知,令,,,则,所以故答案为:13、【解析】设不等式的解集为,从而得出韦达定理,由可得,要使,即不等式的解集为,则可得,以及是方程的两个根,再得出其韦达定理,比较韦达定理可得出,从而求出与的关系,代入,得出答案.【详解】,则由题意设集合,即不等式的解集为所以是方程的两个不等实数根则,则由可得,由,所以不等式的解集为所以是方程,即的两个不等实数根,所以故,,则,则,则由,即,即,解得综上可得,所以的最大值为故答案:14、①.②.【解析】先判断函数的奇偶性,由求解;再根据函数的单调性,由求解.【详解】因为的定义域为R,且,,所以是奇函数,又,则-2;因为在上是增函数,所以在上是增函数,又是R上的奇函数,所以在R上递增,且,所以由,得,即,所以,解得或,所以实数的取值范围是,故答案为:,15、.【解析】根据含有一个量词的命题的否定可得结果【详解】由含有一个量词的命题的否定可得,命题“”的否定为“”故答案为【点睛】对于含有量词的命题的否定要注意两点:一是要改换量词,把特称(全称)量词改为全称(特称)量词;二是把命题进行否定.本题考查特称命题的否定,属于简单题16、2【解析】先计算,再计算即得解.【详解】解:,所以.故答案为:2三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)样本空间答案见解析,概率是(2)【解析】(1)将2名女生,3名男生分别用a,b;c,d,e表示,即可列出样本空间,再根据古典概型的概率公式计算可得;(2)设事件“当选的2名同学中至少有1名男生”,事件“当选的2名同学中全部都是女生”,事件B,C为对立事件,利用古典概型的概率公式求出,最后根据对立事件的概率公式计算可得;【小问1详解】解:将2名女生,3名男生分别用a,b;c,d,e表示,则从5名同学中任选2名同学试验的样本空间为,共有10个样本点,设事件“当选的2名同学中恰有1名女生”,则,样本点有6个,∴.即当选的2名同学中恰有1名女生的概率是【小问2详解】解:设事件“当选的2名同学中至少有1名男生”,事件“当选的2名同学中全部都是女生”,事件B,C为对立事件,因为,∴,∴.即当达的2名同学中至少有1名男生的概率是.18、(Ⅰ)见解析;(Ⅱ).【解析】(1)由面面垂直的判定定理很容易得结论;(2)所求三棱锥底面积容易求得,是本题转化为求三棱锥的高,利用直线与平面所成的角为,作出线面角,进而可求得的值,则可得的长试题解析:(1)如图,因为三棱柱是直三棱柱,所以,又是正三角形的边的中点,所以又,因此平面而平面,所以平面平面(2)设的中点为,连结,因为是正三角形,所以又三棱柱是直三棱柱,所以因此平面,于是为直线与平面所成的角,由题设,,所以在中,,所以故三棱锥的体积考点:直线与平面垂直的判定定理;直线与平面所成的角;几何体的体积.19、(1);(2);【解析】(1)由集合描述求集合、,根据集合交运算求;(2)由充分不必要条件知⫋,即可求m的取值范围.【详解】,(1)时,,∴;(2)“”是“”的充分不必要条件,即⫋,又且,∴,解得;【点睛】本题考查了集合的基本运算,及根据充分不必要条件得到集合的包含关系,进而求参数范围,属于基础题.20、(1)(2)(3)【解析】(1)根据f(x)为偶函数,由f(-x)=-f(x),即对恒成立求解;(2)由有零点,转化为有解,令,转化为函数y=p(x)图象与直线y=a有交点求解;(3)根据,使得成立,由求解.【小问1详解】解:因f(x)为偶函数,所以,都有f(-x)=-f(x),即对恒成立,对恒成立,对恒成立,所以【小问2详解】因为有零点即有解,即有解令,则函数y=p(x)图象与直线y=a有交点,当0<a<1时,无解;当a>1时,在上单调递减,且,所以在上单调递减,值域为由有解,可得a>0,此时a>1,综上可知,a的取值范围是;【小问3详解】,当时,,由(2)知,当且仅当时取等号,所以的最小值为1,因为,使得成立,所有,即对任意的恒

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论