版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省江南十校2026届高二数学第一学期期末复习检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.过点且与原点距离最大的直线方程是()A. B.C. D.2.学校开设甲类选修课3门,乙类选修课4门,从中任选3门,甲乙两类课程都有选择的不同选法种数为()A.24 B.30C.60 D.1203.函数有两个不同的零点,则实数的取值范围是()A. B.C. D.4.设P是抛物线上的一个动点,F为抛物线的焦点.若,则的最小值为()A. B.C.4 D.55.直线的倾斜角为()A.30° B.60°C.90° D.120°6.设x∈R,则x<3是0<x<3的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件7.已知椭圆与椭圆,则下列结论正确的是()A.长轴长相等 B.短轴长相等C.焦距相等 D.离心率相等8.已知空间中三点,,,则下列结论中正确的有()A.平面ABC的一个法向量是 B.的一个单位向量的坐标是C. D.与是共线向量9.若圆与圆相切,则的值为()A. B.C.或 D.或10.已知等差数列的前项和为,,,则()A. B.C. D.11.已知双曲线=1的一条渐近线方程为x-4y=0,其虚轴长为()A.16 B.8C.2 D.112.如图所示的程序框图,阅读下面的程序框图,则输出的S=()A.14 B.20C.30 D.55二、填空题:本题共4小题,每小题5分,共20分。13.过圆内的点作一条直线,使它被该圆截得的线段最长,则直线的方程是______14.命题“任意,”为真命题,则实数a的取值范围是______.15.已知函数,有且只有一个零点,则实数的取值范围是_______.16.定义点到曲线的距离为该点与曲线上所有点之间距离的最小值,则点到曲线距离为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数(1)证明;(2)设,证明:若一定有零点,并判断零点的个数18.(12分)已知椭圆的离心率为,过左焦点且垂直于长轴的弦长为.(1)求椭圆的标准方程;(2)点为椭圆的长轴上的一个动点,过点且斜率为的直线交椭圆于两点,证明为定值.19.(12分)已知函数.(1)求函数的单调区间;(2)当时,求函数的值域.20.(12分)如图,在四棱雉中,平面ABCD,底面ABCD是直角梯形,其中,,,,E为棱BC上的点,且(1)求证:平面PAC;(2)求二面角A-PC-D的正弦值21.(12分)已知锐角的内角A,B,C的对边分别为a,b,c,且.(1)求A;(2)若,求外接圆面积的最小值.22.(10分)已知椭圆,直线.(1)若直线与椭圆相切,求实数的值;(2)若直线与椭圆相交于A、两点,为线段的中点,为坐标原点,且,求实数的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】过点且与原点O距离最远的直线垂直于直线,再由点斜式求解即可【详解】过点且与原点O距离最远的直垂直于直线,,∴过点且与原点O距离最远的直线的斜率为,∴过点且与原点O距离最远的直线方程为:,即.故选:A2、B【解析】利用组合数计算出正确答案.【详解】甲乙两类课程都有选择的不同选法种数为.故选:B3、B【解析】方程有两个根,转化为求函数的单调性与极值【详解】函数定义域是,有两个零点,即有两个不等实根,即有两个不等实根设,则,时,,递减,时,,递增,极小值=,而时,,时,,所以故选:B4、C【解析】作出图形,过点作抛物线准线的垂线,由抛物线的定义得,从而得出,再由、、三点共线时,取最小值得解.【详解】,所以在抛物线的内部,过点作抛物线准线的垂线,由抛物线的定义得,,当且仅当、、三点共线时,等号成立,因此,的最小值为.故选:C.5、B【解析】根据给定方程求出直线斜率,再利用斜率的定义列式计算得解.【详解】直线的斜率,设其倾斜角为,显然,则有,解得,直线的倾斜角为.故选:B6、B【解析】利用充分条件、必要条件的定义可得出结论.【详解】,因此,“”是“”必要不充分条件.故选:B.7、C【解析】利用,可得且,即可得出结论【详解】∵,且,椭圆与椭圆的关系是有相等的焦距故选:C8、A【解析】根据已知条件,结合空间中平面法向量的定义,向量模长的求解,以及共线定理,对每个选项进行逐一分析,即可判断和选择.【详解】因为,,,故可得,因为,故,不平行,则D错误;对A:不妨记向量为,则,又,不平行,故向量是平面的法向量,则A正确;对B:因为向量的模长为,其不是单位向量,故B错误;对C:因为,故可得,故C错误;故选:A.9、C【解析】分类讨论:当两圆外切时,圆心距等于半径之和;当两圆内切时,圆心距等于半径之差,即可求解.【详解】圆的圆心为,半径为,圆的圆心为,半径为.①当两圆外切时,有,此时.②当两圆内切时,有,此时.综上,当时两圆外切;当时两圆内切.故选:C【点睛】本题考查了圆与圆的位置关系,解答两圆相切问题时易忽略两圆相切包括内切和外切两种情况.解答时注意分类讨论,属于基础题.10、C【解析】利用已知条件求得,由此求得.【详解】依题意,解得,所以.故选:C【点睛】本小题主要考查等差数列的通项公式和前项和公式,属于基础题.11、C【解析】根据双曲线的渐近线方程的特点,结合虚轴长的定义进行求解即可.【详解】因为双曲线=1的一条渐近线方程为x-4y=0,所以,因此该双曲线的虚轴长为,故选:C12、C【解析】经分析为直到型循环结构,按照循环结构进行执行,当满足跳出的条件时即可输出值【详解】解:第一次循环S=1,i=2;第二次循环S=1+22=5,i=3;第三次循环S=5+32=14,i=4;第四次循环S=14+42=30,i=5;此时5>4,跳出循环,故输出的值为30故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】当直线l过圆心时满足题意,进而求出答案.【详解】圆的标准方程为:,圆心,当l过圆心时满足题意,,所以l的方程为:.故答案为:.14、【解析】分离常数,将问题转化求函数最值问题.【详解】任意,恒成立恒成立,故只需,记,,易知,所以.故答案为:15、【解析】由题知方程,,有且只有一个零点,进而构造函数,利用导数研究函数单调性与函数值得变化情况,作出函数的大致图像,数形结合求解即可.【详解】解:因为函数,,有且只有一个零点,所以方程,,有且只有一个零点,令,则,,令,则所以为上的单调递减函数,因为,所以当时,;当时,;所以当时,;当时,,所以在上单调递增,在上单调递减,因为当趋近于时,趋近于,当趋近于时,趋近于,且,时,,故的图像大致如图所示,所以方程,,有且只有一个零点等价于或.所以实数的取值范围是故答案为:16、2【解析】设出曲线上任意一点,利用两点间距离公式表达出,利用基本不等式求出最小值.【详解】当时,显然不成立,故,此时,设曲线任意一点,则,其中,当且仅当,即时等号成立,此时即为最小值.故答案为:2三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)证明见解析,1个零点.【解析】(1)求导同分化简,构造新函数判断导数正负即可;(2)令g(x)=0,化简方程,将问题转化为讨论方程解的个数问题.【小问1详解】,设,则,时,递减,时,递增,而,所以时,,所以;小问2详解】有零点,则有解,即有解,又,则只要,因为,方程可以化为,现在证明有解,令,则,可知在递减,在递增,所以,因为,所以,在内恒有,而在递增,当x=时,h()=,故根据零点存在性定理知在存在唯一零点.所以有且只有一个零点,所以有零点,有一个零点【点睛】本题关键是是将方程零点问题转化为方程解的问题,通过讨论单调性和最值(极值)的正负即可判断零点的有无和个数.18、(1);(2)证明见解析.【解析】(1)借助题设条件建立方程组求解;(2)依据题设运用直线与椭圆的位置关系探求.试题解析:(1)由,可得椭圆方程.(2)设的方程为,代入并整理得:.设,,则,同理则.所以,是定值.考点:椭圆的标准方程几何性质及直线与椭圆的位置关系等有关知识的综合运用【易错点晴】本题考查的是椭圆的标准方程等基础知识及直线与椭圆的位置关系等知识的综合性问题.解答本题的第一问时,直接依据题设条件运用椭圆的几何性质和椭圆的有关概念建立方程组,进而求得椭圆的标准方程为;第二问的求解过程中,先设直线的方程为,再借助二次方程中根与系数之间的关系,依据坐标之间的关系进行计算探求,从而使得问题获解.19、(1)单调递增区间(−∞,−1)和(4,+∞),单调递减区间(−1,4)(2)【解析】(1)求出,令,由导数的正负即可得到函数f(x)的单调递增区间和递减区间;(2)求出函数在区间中的单调性,求出极大值和极小值以及区间端点的函数值,比较大小即可得到答案【小问1详解】由函数得,令,解得x<−1或x>4,;令,解得−1<x<4,故函数f(x)的单调递增区间为(−∞,−1)和(4,+∞),单调递减区间为(−1,4);【小问2详解】由(1)可知,当x∈[−3,−1)时,,f(x)单调递增,当x∈(−1,4)时,,f(x)单调递减,当x∈(4,6]时,,f(x)单调递增,所以当x=−1时,函数f(x)取得极大值f(−1)=,当x=4时,函数f(x)取得极小值f(4)=,又,所以当x∈[−3,6]时,函数f(x)的值域为20、(1)证明见解析(2)【解析】建立空间直角坐标系,计算出相关点的坐标,进而计算出相关向量的坐标;(1)计算向量的数量积,,根据数量积结果为零,证明线线垂直,进而证明线面垂直2;(2)求出平面PCD的法向量和平面PAC的法向量,根据向量的夹角公式即可求解.【小问1详解】证明:因为平面ABCD,平面ABCD,平面ABCD,所以,,又因为,则以A为坐标原点,分别以AB、AD、AP所在的直线为x、y、z轴建立空间直角坐标系,则,,,,,,,,,则,,所以,,又,平面PAC,平面PAC,∴平面PAC;【小问2详解】解:由(1)可知平面PAC,可作为平面PAC的法向量,设平面PCD的法向量,因为,所以,即,不妨设,得,又由图示知二面角为锐角,所以二面角的正弦值为21、(1)(2)【解析】(1)利用二倍角公式将已知转化为正弦函数,解一元二次方程可得;(2)由余弦定理和(1)可求a的最小值,再
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 江苏四级考试试题及答案
- 技师验光考试试题及答案
- 生产电动车计件制度规范
- 个人电脑使用制度规范
- 校园文明制度规范
- 配枪管理制度规范
- 红色培训规范制度
- 焊工环保制度规范
- 签字规范制度
- 规范幼儿喂药制度
- 2025至2030年中国水泥基渗透结晶型堵漏材料市场分析及竞争策略研究报告
- 压力变送器拆校课件
- 2025年高考真题分类汇编必修二 《经济与社会》(全国)(原卷版)
- 2026届高考英语二轮复习:2025浙江1月卷读后续写 课件
- 电子屏安全培训课件
- 2.3.2 中国第一大河-长江 课件 湘教版地理八年级上册
- 妇科临床路径课件
- 2025贵州省某大型国有企业招聘光伏、风电项目工作人员笔试备考题库及答案解析
- 导致老年人跌倒的用药风险研究
- 高空作业生命绳安全使用规范
- GB 21256-2025粗钢生产主要工序单位产品能源消耗限额
评论
0/150
提交评论