版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黑龙江省哈尔滨市师范大学附属中学2026届数学高二上期末教学质量检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数有两个不同的零点,则实数的取值范围是()A B.C. D.2.如图,过抛物线的焦点的直线交抛物线于点、,交其准线于点,若,且,则的值为()A. B.C. D.3.某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待18秒才出现绿灯的概率为()A B.C. D.4.某单位有840名职工,现采用系统抽样方法,抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为A.11 B.12C.13 D.145.某高中学校高二和高三年级共有学生人,为了解该校学生的视力情况,现采用分层抽样的方法从三个年级中抽取一个容量为的样本,其中高一年级抽取人,则高一年级学生人数为()A. B.C. D.6.已知圆C过点,圆心在x轴上,则圆C的方程为()A. B.C. D.7.如图,修建一条公路需要一段环湖弯曲路段与两条直道平滑连接(相切).已知环湖弯曲路段为某三次函数图象的一部分,则该函数的解析式为()A.B.C.D.8.在空间直角坐标系中,点关于原点对称的点的坐标为()A. B.C. D.9.已知,,则下列结论一定成立的是()A. B.C. D.10.为了防控新冠病毒肺炎疫情,某市疾控中心检测人员对外来入市人员进行核酸检测,人员甲、乙均被检测.设命题为“甲核酸检测结果为阴性”,命题为“乙核酸检测结果为阴性”,则命题“至少有一位人员核酸检测结果不是阴性”可表示为()A. B.C. D.11.设是等差数列的前n项和,若,,则()A.26 B.-7C.-10 D.-1312.双曲线的渐近线方程为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知数列满足,,若为等差数列,则___________,若,则数列的前项和为___________.14.已知双曲线中心在坐标原点,左右焦点分别为,渐近线分别为,过点且与垂直的直线分别交于两点,且,则双曲线的离心率为________15.已知数列满足,则的前20项和___________.16.某甲、乙两人练习跳绳,每人练习10组,每组不间断跳绳计数的茎叶图如图,则下面结论中所有正确的序号是___________.①甲比乙的极差大;②乙的中位数是18;③甲的平均数比乙的大;④乙的众数是21.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数(Ⅰ)解关于的不等式;(Ⅱ)若关于的不等式恒成立,求实数的取值范围18.(12分)已知单调递增的等比数列满足:,且是,的等差中项(1)求数列的通项公式;(2)若,,求19.(12分)已知抛物线C:x2=2py的焦点为F,点N(t,1)在抛物线C上,且|NF|=.(1)求抛物线C的方程;(2)过点M(0,1)的直线l交抛物线C于不同的两点A,B,设O为坐标原点,直线OA,OB的斜率分别为k1,k2,求证:k1k2为定值.20.(12分)如图,在四棱柱中,底面,,,且,(1)求证:平面平面;(2)求二面角所成角的余弦值21.(12分)已知椭圆C:,斜率为的直线l与椭圆C交于A、B两点且(1)求椭圆C的离心率;(2)求直线l的方程22.(10分)如图,在四棱锥中,底面为矩形,平面平面,.(1)证明:平面平面;(2)若,为棱的中点,,,求二面角的余弦值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】分离参数,求函数的导数,根据函数有两个零点可知函数的单调性,即可求解.【详解】由题意得有两个零点令,则且所以,在上为增函数,可得,当,在上单调递减,可得,即要有两个零点有两个零点,实数的取值范围是.故选:A【点睛】方法点睛:已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解2、B【解析】分别过点、作准线的垂线,垂足分别为点、,设,根据抛物线的定义以及直角三角形的性质可求得,结合已知条件求得,分析出为的中点,进而可得出,即可得解.【详解】如图,分别过点、作准线的垂线,垂足分别为点、,设,则由己知得,由抛物线的定义得,故,在直角三角形中,,,因为,则,从而得,所以,,则为的中点,从而.故选:B.3、B【解析】由几何概型公式求解即可.【详解】红灯持续时间为40秒,则至少需要等待18秒才出现绿灯的概率为,故选:B4、B【解析】使用系统抽样方法,从840人中抽取42人,即从20人抽取1人∴从编号1~480的人中,恰好抽取480/20=24人,接着从编号481~720共240人中抽取240/20=12人考点:系统抽样5、B【解析】先得到从高二和高三年级抽取人,再利用分层抽样进行求解.【详解】设高一年级学生人数为,因为从三个年级中抽取一个容量为的样本,且高一年级抽取人,所以从高二和高三年级抽取人,则,解得,即高一年级学生人数为.故选:B6、C【解析】设出圆的标准方程,将已知点的坐标代入,解方程组即可.【详解】设圆的标准方程为,将坐标代入得:,解得,故圆的方程为,故选:C.7、D【解析】由题设,“需要一段环湖弯曲路段与两条直道平滑连接(相切)“可得出此两点处的切线正是两条直道所在直线,由此规律验证四个选项即可得出答案【详解】由函数图象知,此三次函数在上处与直线相切,在点处与相切,下研究四个选项中函数在两点处的切线A:,将0代入,此时导数为,与点处切线斜率为矛盾,故A错误B:,将0代入,此时导数为,不为,故B错误;C:,将2代入,此时导数为,与点处切线斜率为3矛盾,故C错误;D:,将0,2代入,解得此时切线的斜率分别是,3,符合题意,故D正确;故选:D.8、C【解析】根据点关于原点对称的性质即可知答案.【详解】由点关于原点对称,则对称点坐标为该点对应坐标的相反数,所以.故选:C9、B【解析】根据不等式的同向可加性求解即可.【详解】因为,所以,又,所以.故选:B.10、D【解析】表示出和,直接判断即可.【详解】命题为“甲核酸检测结果为阴性”,则命题为“甲核酸检测结果不是阴性”;命题为“乙核酸检测结果为阴性”,则命题为“乙核酸检测结果不是阴性”.故命题“至少有一位人员核酸检测结果不是阴性”可表示为.故选D.11、C【解析】直接利用等差数列通项和求和公式计算得到答案.【详解】,,解得,故.故选:C.12、A【解析】直接求出,,进而求出渐近线方程.【详解】中,,,所以渐近线方程为,故.故选:A二、填空题:本题共4小题,每小题5分,共20分。13、①.##②.【解析】利用递推关系式,结合等差数列通项公式可求得公差,进而得到;利用递推关系式可知数列的奇数项和偶数项分别成等差数列,采用裂项相消的方法可求得前项和.【详解】由得:,解得:;为等差数列,设其公差为,则,解得:,;由知:数列的奇数项是以为首项,为公差的等差数列;偶数项是以为首项,为公差的等差数列;,又,,数列的前项和,.故答案为:;.【点睛】关键点点睛:本题考查根据数列递推关系求解数列中的项、裂项相消法求和的问题;解题关键是能够根据递推关系式得到数列的奇数项和偶数项分别成等差数列,由此可通过裂项相消的方法求得所求数列的和.14、【解析】判断出三角形的形状,求得点坐标,由此列方程求得,进而求得双曲线的离心率.【详解】依题意设双曲线方程为,双曲线的渐近线方程为,右焦点,不妨设.由于,所以是线段的中点,由于,所以是线段的垂直平均分,所以三角形是等腰三角形,则.直线的斜率为,则直线的斜率为,所以直线的方程为,由解得,则,即,化简得,所以双曲线的离心率为.故答案为:15、135【解析】直接利用数列的递推关系式写出相邻四项之和,进而求出数列的和.【详解】数列满足,所以,故,当时,,当时,,,当时,,所以.故答案为:135.16、①③④【解析】根据茎叶图提供的数据求出相应的极差、中位数、均值、众数再判断【详解】由茎叶图,甲的极差是37-8=29,乙的极差是23-9=14,甲极差大,①正确;乙中位数是,②错;甲平均数是:,乙的平均数为:16.9,③正确;乙的众数是21,④正确故答案为:①③④三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ)【解析】(Ⅰ)用找零点法去绝对值,然后再解不等式.(Ⅱ)将原函数转化为分段函数,再结合函数图像求得其最小值.将恒成立转化为试题解析:(Ⅰ)或或或所以原不等式解集为(Ⅱ),由函数图像可知,所以要使恒成立,只需考点:1绝对值不等式;2恒成立问题;3转化思想18、(1);(2)【解析】(1)将已知条件整理变形为等比数列的首项和公比来表示,解方程组得到基本量,可得到通项公式(2)化简通项得,根据特点求和时采用错位相减法求解试题解析:(1)设等比数列的首项为,公比为,依题意,有2()=+,代入,得=8,2分∴+=20∴解之得或4分又单调递增,∴="2,"=2,∴=2n6分(2),∴①8分∴②∴①-②得=12分考点:1.等比数列通项公式;2.错位相减求和19、(1)x2=2y;(2)证明见解析【解析】(1)利用抛物线的定义进行求解即可;(2)设直线l的直线方程与抛物线方程联立,根据一元二次方程根与系数关系、斜率公式进行证明即可.【小问1详解】∵点N(t,1)在抛物线C:x2=2py上,且|NF|=,∴|NF|=,解得p=1,∴抛物线C的方程为x2=2y;【小问2详解】依题意,设直线l:y=kx+1,A(x1,y1),B(x2,y2),联立,得x2﹣2kx﹣2=0.则x1x2=﹣2,∴.故k1k2为定值.【点睛】关键点睛:利用抛物线的定义是解题的关键.20、(1)证明见解析;(2).【解析】(1)证出,,由线面垂直的判定定理可得平面,再根据面面垂直的判定定理即可证明.(2)分别以,,为,,轴,建立空间直角坐标系,求出平面的一个法向量以及平面的一个法向量,由即可求解.【详解】(1)证明:因为,,所以,,因为,所以,所以,即因为底面,所以底面,所以因为,所以平面,又平面,所以平面平面(2)解:如图,分别以,,为,,轴,建立空间直角坐标系,则,,,,所以,,,设平面的法向量为,则令,得设平面的法向量为,则令,得,所以,由图知二面角为锐角,所以二面角所成角的余弦值为【点睛】思路点睛:解决二面角相关问题通常用向量法,具体步骤为:(1)建坐标系,建立坐标系的原则是尽可能的使得已知点在坐标轴上或在坐标平面内;(2)根据题意写出点的坐标以及向量的坐标,注意坐标不能出错.(3)利用数量积验证垂直或求平面的法向量.(4)利用法向量求距离、线面角或二面角.21、(1)(2)或【解析】(1)将椭圆化为标准方程,求得,进而求得离心率;(2)设直线,,,与椭圆联立,借助韦达定理及弦长公式求得,从而求得直线方程.【小问1详解】由题知,椭圆C:,则,离心率【小问2详解】设直线,,联立,化简得,则,解得,,由弦长公式知,,解得,故直线或22、(1)见解析;(2)【解析】分析:(1)由四边形为矩形,可得,再由已知结合面面垂直的性质可得平面,进一步得到,再由,利用线面垂直的判定定理可得面,即可证得平面;(2)取的中点,连接,以为坐标原点,建立如图所示的空间直角坐标系,由题得,解得.进而求得平面和平面的法向量,利用向量的夹角公式,即可求解二面角的余弦值.详解:(1)证明:∵四边形ABCD是矩形,∴CD⊥BC.∵平面PBC⊥平面ABCD,平面PBC∩平面ABCD=BC,CD平面ABCD,∴CD⊥平面PBC,∴CD⊥PB.∵PB⊥PD,CD∩PD=D,CD、PD平面PCD,∴PB⊥平面PCD.∵PB平面PAB,∴平面PAB⊥平面PCD.(2)设BC中点为,连接,,又面面,且面面,所以面.以为坐标原点,的方向为轴正方向,为单位长,建立如图所示的空间直角坐标系.由(1)知
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030新能源节能建筑材料行业市场供给需求分析及投资风险评估发展研究报告
- 2025-2030新能源汽车销售市场供需关系分析及盈利模式规划研究报告
- 数字营销营销策划与执行方案
- 工业设备防腐保温施工技术方案
- 2026年二级建造师考试施工管理笔试考核及答案
- 教育培训部门组织结构优化方案
- 智能化停车场管理系统设计方案
- 高考高频散文阅读答题技巧解析
- IT公司企业简介写作范例
- 安全文明施工管理标准及保障措施
- 禁毒社工知识培训课件
- 家具展厅管理方案(3篇)
- 半成品摆放管理办法
- 周围性瘫痪的护理常规
- 电能质量技术监督培训课件
- 电子制造行业数字化转型白皮书
- 肿瘤患者双向转诊管理职责
- 福建省漳州市2024-2025学年高一上学期期末教学质量检测历史试卷(含答案)
- 定额〔2025〕2号文-关于发布2020版电网技术改造及检修工程概预算定额2024年下半年价格
- 管道穿越高速桥梁施工方案
- 2024版《中医基础理论经络》课件完整版
评论
0/150
提交评论