版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届湖南省百所重点名校大联考高一数学第一学期期末考试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.“”是“且”的()A.必要而不充分条件 B.充分而不必要条件C.充要条件 D.既不充分也不必要条件2.地震以里氏震级来度量地震的强度,若设为地震时所散发出来的相对能量,则里氏震级可定义为.在2021年3月下旬,地区发生里氏级地震,地区发生里氏7.3级地震,则地区地震所散发出来的相对能量是地区地震所散发出来的相对能量的()倍.A.7 B.C. D.3.已知函数.若关于x的方程在上有解,则实数m的取值范围是()A. B.C. D.4.设函数(),,则方程在区间上的解的个数是A. B.C. D.5.下列命题中正确的个数是()①两条直线,没有公共点,那么,是异面直线②若直线上有无数个点不在平面内,则③空间中如果两个角的两边分别对应平行,那么这两个角相等或互补④若直线与平面平行,则直线与平面内的任意一条直线都没有公共点A. B.C. D.6.函数在区间上的最大值为A.1 B.4C.-1 D.不存在7.已知,则的最小值为().A.9 B.C.5 D.8.已知函数和,则下列结论正确的是A.两个函数的图象关于点成中心对称图形B.两个函数的图象关于直线成轴对称图形C.两个函数的最小正周期相同D.两个函数在区间上都是单调增函数9.已知角的顶点与坐标原点重合,始边与轴的非负半轴重合,其终边与单位圆相交于点,则()A. B.C. D.10.=()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知一容器中有两种菌,且在任何时刻两种菌的个数乘积为定值,为了简单起见,科学家用来记录菌个数的资料,其中为菌的个数,现有以下几种说法:①;②若今天值比昨天的值增加1,则今天的A菌个数比昨天的A菌个数多10;③假设科学家将B菌的个数控制为5万,则此时(注:)则正确的说法为________.(写出所有正确说法的序号)12.若,则的定义域为____________.13.已知一个扇形的弧所对的圆心角为54°,半径r=20cm,则该扇形的弧长为_____cm14.函数,的图象恒过定点P,则P点的坐标是_____.15.函数的最大值为().16.函数最大值为__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,∠BCD=60°,AB=2AD,PD⊥平面ABCD,点M为PC的中点(1)求证:PA∥平面BMD;(2)求证:AD⊥PB;(3)若AB=PD=2,求点A到平面BMD的距离18.定义:若对定义域内任意x,都有(a为正常数),则称函数为“a距”增函数(1)若,(0,),试判断是否为“1距”增函数,并说明理由;(2)若,R是“a距”增函数,求a的取值范围;(3)若,(﹣1,),其中kR,且为“2距”增函数,求的最小值19.如图,在平行四边形中,分别是上的点,且满,记,,试以为平面向量的一组基底.利用向量的有关知识解决下列问题;(1)用来表示向量;(2)若,且,求;20.已知,,,.当k为何值时:(1);(2).21.已知函数为奇函数,,其中(1)若函数h(x)的图象过点A(1,1),求实数m和n的值;(2)若m=3,试判断函数在上的单调性并证明;(3)设函数,若对每一个不小于3的实数,都恰有一个小于3的实数,使得成立,求实数m的取值范围
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】根据充分条件和必要条件的定义结合不等式的性质分析判断【详解】当时,满足,而不成立,当且时,,所以,所以“”是“且”的必要而不充分条件,故选:A2、C【解析】把两个震级代入后,两式作差即可解决此题【详解】设里氏3.1级地震所散发出来的能量为,里氏7.3级地震所散发出来的能量为,则①,②②①得:,解得:故选:3、C【解析】先对函数化简变形,然后由在上有解,可知,所以只要求出在上即可【详解】,由,得,所以,所以,即,由在上有解,可知,所以,得,氢实数m的取值范围是,故选:C4、A【解析】由题意得,方程在区间上的解的个数即函数与函数的图像在区间上的交点个数在同一坐标系内画出两个函数图像,注意当时,恒成立,易得交点个数为.选A点睛:函数零点的求解与判断方法:(1)直接求零点:令f(x)=0,如果能求出解,则有几个解就有几个零点(2)零点存在性定理:利用定理不仅要函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.但在应用图象解题时要注意两个函数图象在同一坐标系内的相对位置,要做到观察仔细,避免出错5、C【解析】①由两直线的位置关系判断;②由直线与平面的位置关系判断;③由空间角定理判断;④由直线与平面平行的定义判断.【详解】①两条直线,没有公共点,那么,平行或异面直线,故错误;②若直线上有无数个点不在平面内,则或相交,故错误;③由空间角定理知,正确;④由直线与平面平行的定义知,正确;故选:C6、C【解析】根据题干知,可画出函数图像,是开口向下的以y轴为对称轴的二次函数,在上单调递减,故最大值在1处取得得到-1.故答案为C7、B【解析】首先将所给的不等式进行恒等变形,然后结合均值不等式即可求得其最小值,注意等号成立的条件.【详解】.,且,,当且仅当,即时,取得最小值2.的最小值为.故选B.【点睛】本题主要考查基本不等式求最值的方法,代数式的变形技巧,属于中等题.8、D【解析】由题意得选项A中,由于的图象关于点成中心对称,的图象不关于点成中心对称,故A不正确选项B中,由于函数的图象关于点成中心对称,的图象关于直线成轴对称图形,故B不正确选项C中,由于的周期为2π,的周期为π,故C不正确选项D中,两个函数在区间上都是单调递增函数,故D正确选D9、C【解析】由已知利用任意角的三角函数求得,再由二倍角的余弦公式求解即可【详解】解:因为角的终边与单位圆相交于点,则,故选:C10、B【解析】利用诱导公式和特殊角的三角函数值直接计算作答.【详解】.故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、③【解析】对于①通过取特殊值即可排除,对于②③直接带入计算即可.【详解】当nA=1时,PA=0,故①错误;若PA=1,则nA=10,若PA=2,则nA=100,故②错误;B菌的个数为nB=5×104,∴,∴.又∵,∴故选③12、【解析】使表达式有意义,解不等式组即可.【详解】由题,解得,即,故答案为:.【点晴】此题考函数定义域的求法,属于简单题.13、【解析】利用扇形的弧长公式求弧长即可.【详解】由弧长公式知:该扇形的弧长为(cm).故答案为:14、【解析】令,解得,且恒成立,所以函数的图象恒过定点;故填.15、【解析】利用可求最大值.【详解】因为,即,,取到最小值;所以函数的最大值为.故答案为:.【点睛】本题主要考查三角函数的最值问题,借助正弦函数的值域能方便求解,侧重考查数学抽象的核心素养.16、3【解析】分析:利用复合函数的性质求已知函数的最大值.详解:由题得当=1时,函数取最大值2×1+1=3.故答案为3.点睛:本题主要考查正弦型函数的最大值,意在考查学生对该基础知识的掌握水平.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)详见解析;(2)详见解析;(3).【解析】(1)设AC和BD交于点O,MO为三角形PAC的中位线可得MO∥PA,再利用直线和平面平行的判定定理,证得结论(2)由PD⊥平面ABCD,可得PD⊥AD,再由cos∠BAD,证得AD⊥BD,可证AD⊥平面PBD,从而证得结论(3)点A到平面BMD的距离等于点C到平面BMD的距离h,求出MN、MO的值,利用等体积法求得点C到平面MBD的距离h【详解】(1)证明:设AC和BD交于点O,则由底面ABCD是平行四边形可得O为AC的中点由于点M为PC的中点,故MO为三角形PAC的中位线,故MO∥PA.再由PA不在平面BMD内,而MO在平面BMD内,故有PA∥平面BMD(2)由PD⊥平面ABCD,可得PD⊥AD,平行四边形ABCD中,∵∠BCD=60°,AB=2AD,∴cos∠BADcos60°,∴AD⊥BD这样,AD垂直于平面PBD内的两条相交直线,故AD⊥平面PBD,∴AD⊥PB(3)若AB=PD=2,则AD=1,BD=AB•sin∠BAD=2,由于平面BMD经过AC的中点,故点A到平面BMD的距离等于点C到平面BMD的距离取CD得中点N,则MN⊥平面ABCD,且MNPD=1设点C到平面MBD的距离为h,则h为所求由AD⊥PB可得BC⊥PB,故三角形PBC为直角三角形由于点M为PC的中点,利用直角三角形斜边的中线等于斜边的一半,可得MD=MB,故三角形MBD为等腰三角形,故MO⊥BD由于PA,∴MO由VM﹣BCD=VC﹣MBD可得,•()•MN•(BD×MO)×h,故有()×1•()•h,解得h【点睛】本题主要考查直线和平面平行的判定定理,直线和平面垂直的性质,用等体积法求点到平面的距离,体现了数形结合和等价转化的数学思想,属于中档题18、(1)见解析;(2);(3).【解析】(1)利用“1距”增函数的定义证明即可;(2)由“a距”增函数的定义得到在上恒成立,求出a的取值范围即可;(3)由为“2距”增函数可得到在恒成立,从而得到恒成立,分类讨论可得到的取值范围,再由,可讨论出的最小值【详解】(1)任意,,因为,,所以,所以,即是“1距”增函数(2).因为是“距”增函数,所以恒成立,因为,所以在上恒成立,所以,解得,因为,所以.(3)因为,,且为“2距”增函数,所以时,恒成立,即时,恒成立,所以,当时,,即恒成立,所以,得;当时,,得恒成立,所以,得,综上所述,得.又,因为,所以,当时,若,取最小值为;当时,若,取最小值.因为在R上是单调递增函数,所以当,的最小值为;当时的最小值为,即.【点睛】本题考查了函数的综合知识,考查了函数的单调性与最值,考查了恒成立问题,考查了分类讨论思想的运用,属于中档题19、(1);(2).【解析】(1)由平面向量的线性运算法则结合图形即可得解;(2)由平面向量数量积的运算律可得,进而可得,再由运算即可得解.【详解】(1)∵在平行四边形中,,∴;(2)由(1)可知:,∴,∵且,∴,∴,又,∴,∴,∴.【点睛】本题考查了平面向量线性运算及数量积运算的应用,考查了运算求解能力,属于基础题.20、(1)或2;(2)【解析】(1)根据向量共线坐标公式列方程即可求解;(2)根据向量垂直坐标公式列方程即可求解【详解】(1)若,有,整理为解得或2;(2)若,有,整理为解得:21、(1)(2)单调递增,证明见解析(3)【解析】(1)运用奇函数的定义可得,再由图象经过点,解方程可得;(2)在,递增.运用单调性的定义,结合因式分解和指数函数的单调性,即可得证;(3)求得当时,;当时,;分别讨论,,,运用基本不等式和函数的单调
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 建筑工程施工安全指导
- 2026秋招:天津旅游集团面试题及答案
- 老年护理学习题及答案
- 开切茧工风险识别考核试卷含答案
- 沼气生产工操作管理能力考核试卷含答案
- 2026秋招:泰康保险试题及答案
- 2026秋招:四川紫坪铺开发公司笔试题及答案
- 2026秋招:四川国际博览集团试题及答案
- 2025年航运管理与国际货物运输手册
- 湖南省长沙市雅礼集团2024-2025学年高二下学期3月月考生物学试题3月月考答案
- 黑龙江省大庆中学2025-2026学年高一(上)期末物理试卷(含答案)
- 高中生寒假安全教育主题班会
- 2025年银行县支行支部书记抓党建述职报告
- 畜牧技术员安全培训效果测试考核试卷含答案
- 2026届天津一中高三语文第一学期期末质量检测模拟试题含解析
- 2025-2026学年第一学期初中物理教研组工作总结报告
- 2026年小学一二年级第一学期无纸笔化考核方案及测试题(一二年级语文数学)
- 2025年时事政治试题库完整参考详解(完整版)及答案
- 生猪屠宰合同范本
- 2023年河南省直机关遴选公务员笔试真题汇编附答案解析(夺冠)
- 企业数字化管理制度制度(3篇)
评论
0/150
提交评论