山东枣庄市2026届高二数学第一学期期末学业质量监测试题含解析_第1页
山东枣庄市2026届高二数学第一学期期末学业质量监测试题含解析_第2页
山东枣庄市2026届高二数学第一学期期末学业质量监测试题含解析_第3页
山东枣庄市2026届高二数学第一学期期末学业质量监测试题含解析_第4页
山东枣庄市2026届高二数学第一学期期末学业质量监测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东枣庄市2026届高二数学第一学期期末学业质量监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知曲线与直线总有公共点,则m的取值范围是()A. B.C. D.2.某家庭准备晚上在餐馆吃饭,他们查看了两个网站关于四家餐馆的好评率,如下表所示,考虑每家餐馆的总好评率,他们应选择()网站①评价人数网站①好评率网站②评价人数网站②好评率餐馆甲100095%100085%餐馆乙1000100%200080%餐馆丙100090%100090%餐馆丁200095%100085%A.餐馆甲 B.餐馆乙C.餐馆丙 D.餐馆丁3.已知实数a,b,c满足,,则a,b,c的大小关系为()A. B.C. D.4.若倾斜角为的直线过,两点,则实数()A. B.C. D.5.已知双曲线的两个焦点,,是双曲线上一点,且,,则双曲线的标准方程是()A. B.C. D.6.已知,,若,则()A.9 B.6C.5 D.37.已知圆,圆,则两圆的公切线的条数为()A.1 B.2C.3 D.48.圆()上点到直线的最小距离为1,则A.4 B.3C.2 D.19.已知等比数列的前n项和为,且,则()A.20 B.30C.40 D.5010.如图,已知正方体,点P是棱中点,设直线为a,直线为b.对于下列两个命题:①过点P有且只有一条直线l与a、b都相交;②过点P有且只有两条直线l与a、b都成角.以下判断正确的是()A.①为真命题,②为真命题 B.①为真命题,②为假命题C.①为假命题,②为真命题 D.①为假命题,②为假命题11.下列问题中是古典概型的是A.种下一粒杨树种子,求其能长成大树的概率B.掷一颗质地不均匀的骰子,求出现1点的概率C.在区间[1,4]上任取一数,求这个数大于1.5概率D.同时掷两枚质地均匀的骰子,求向上的点数之和是5的概率12.若双曲线的一条渐近线方程为.则()A. B.C.2 D.4二、填空题:本题共4小题,每小题5分,共20分。13.在等比数列中,若,,则数列的公比为___________.14.若存在实常数k和b,使得函数F(x)和G(x)对其公共定义域上的任意实数x都满足:F(x)≥kx+b和G(x)≤kx+b恒成立,则称此直线y=kx+b为F(x)和G(x)的“隔离直线”,已知函数f(x)=x2(x∈R),g(x)(x<0),h(x)=2elnx,有下列命题:①F(x)=f(x)﹣g(x)内单调递增;②f(x)和g(x)之间存在“隔离直线”,且b的最小值为﹣4;③f(x)和g(x)之间存在“隔离直线”,且k的取值范围是(﹣4,0];④f(x)和h(x)之间存在唯一的“隔离直线”y=2x﹣e其中真命题为_____(请填所有正确命题的序号)15.函数的图象在点P()处的切线方程是,则_____16.在数列中,,,,若数列是递减数列,数列是递增数列,则______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列满足,(1)设,求证数列为等差数列,并求数列的通项公式;(2)设,数列的前n项和为,是否存在正整数m,使得对任意的都成立?若存在,求出m的最小值;若不存在,试说明理由18.(12分)若双曲线-=1(a>0,b>0)的焦点坐标分别为和,且该双曲线经过点P(3,1)(1)求双曲线的方程;(2)若F是双曲线的右焦点,Q是双曲线上的一点,过点F,Q的直线l与y轴交于点M,且,求直线l的斜率19.(12分)在中,角、、C所对的边分别为、、,,.(1)若,求的值;(2)若的面积,求,的值.20.(12分)已知函数.(1)当时,解不等式;(2)若不等式的解集为,求实数的取值范围.21.(12分)已知如图①,在菱形ABCD中,且,为AD的中点,将沿BE折起使,得到如图②所示的四棱锥,在四棱锥中,求解下列问题:(1)求证:BC平面ABE;(2)若P为AC中点,求二面角的余弦值.22.(10分)已知数列为等差数列,公差,前项和为,,且成等比数列(1)求数列的通项公式(2)设,求数列的前项和

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】对曲线化简可知曲线表示以点为圆心,2为半径的圆的下半部分,对直线方程化简可得直线过定点,画出图形,由图可知,,然后求出直线的斜率即可【详解】由,得,因为,所以曲线表示以点为圆心,2为半径的圆的下半部分,由,得,所以,得,所以直线过定点,如图所示设曲线与轴的两个交点分别为,直线过定点,为曲线上一动点,根据图可知,若曲线与直线总有公共点,则,得,设直线为,则,解得,或,所以,所以,所以,故选:D2、D【解析】根据给定条件求出各餐馆总好评率,再比较大小作答.【详解】餐馆甲的总好评率为:,餐馆乙的总好评率为:,餐馆丙的好评率为:,餐馆丁的好评率为:,显然,所以餐馆丁的总好评率最高.故选:D3、A【解析】利用对数的性质可得,,再构造函数,利用导数判断,再构造,利用导数判断出函数的单调性,再由单调性即可求解.【详解】由题意可得均大于,因为,所以,所以,且,令,,当时,,所以在单调递增,所以,所以,即,令,,当时,,所以在上单调递减,由,,所以,所以,综上所述,.故选:A4、C【解析】根据直线的倾斜角和斜率的关系得到直线的斜率为,再根据两点的斜率公式计算可得;【详解】解:因为直线的倾斜角为,所以直线的斜率为,所以,解得;故选:C5、D【解析】根据条件设,,由条件求得,即可求得双曲线方程.【详解】设,则由已知得,,又,,又,,双曲线的标准方程为.故选:D6、D【解析】根据空间向量垂直的坐标表示即可求解.【详解】.故选:D.7、B【解析】根据圆的方程,求得圆心距和两圆的半径之和,之差,判断两圆的位置关系求解.【详解】因为圆,圆,所以,,所以,所以两圆相交,所以两圆的公切线的条数为2,故选:B8、A【解析】根据题意可得,圆心到直线的距离等于,即,求得,所以A选项是正确的.【点睛】判断直线与圆的位置关系的常见方法:(1)几何法:利用d与r的关系.(2)代数法:联立方程之后利用判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交.上述方法中常用的是几何法,点与圆的位置关系法适用于动直线问题9、B【解析】利用等比数列的前n项和公式即可求解.【详解】设等比数列的首项为,公比为,则,由得,即,解得或(舍),且代入①得,则,所以.故选:B.10、A【解析】①由正方形的性质,可以延伸正方形,再利用两条平行线确定一个平面即可;②一组邻边与对角面夹角相等,在平面内绕P转动,可以得到二条直线与a、b的夹角都等于.【详解】如下图所示,在侧面正方形和再延伸一个正方形和,则平面和在同一个平面内,所以过点P,有且只有一条直线l,即与a、b相交,故①为真命题;取中点N,连PN,由于a、b为异面直线,a、b的夹角等于与b的夹角.由于平面,平面,,所以平面,所以与与b的夹角都为.又因为平面,所以与与b的夹角都为,而,所以过点P,在平面内存在一条直线,使得与与b的夹角都为,同理可得,过点P,在平面内存在一条直线,使得与与的夹角都为;故②为真命题.故选:A11、D【解析】A、B两项中的基本事件的发生不是等可能的;C项中基本事件的个数是无限多个;D项中基本事件的发生是等可能的,且是有限个.故选D【考点】古典概型的判断12、C【解析】求出渐近线方程为,列出方程求出.【详解】双曲线的渐近线方程为,因为,所以,所以.故选:C二、填空题:本题共4小题,每小题5分,共20分。13、##【解析】求出等比数列的公比,利用定义可求得数列的公比.【详解】设等比数列的公比为,则,因此,数列的公比为.故答案为:.14、①②④【解析】①求出F(x)=f(x)﹣g(x)的导数,检验在x∈(,0)内的导数符号,即可判断;②、③设f(x)、g(x)的隔离直线为y=kx+b,x2≥kx+b对一切实数x成立,即有△1≤0,又kx+b对一切x<0成立,△2≤0,k≤0,b≤0,根据不等式的性质,求出k,b的范围,即可判断②③;④存在f(x)和g(x)的隔离直线,那么该直线过这个公共点,设隔离直线的斜率为k.则隔离直线,构造函数,求出函数函数的导数,根据导数求出函数的最值【解答】解:①∵F(x)=f(x)﹣g(x)=x2,∴x∈(,0),F′(x)=2x0,∴F(x)=f(x)﹣g(x)在x∈(,0)内单调递增,故①对;②、③设f(x)、g(x)的隔离直线为y=kx+b,则x2≥kx+b对一切实数x成立,即有△1≤0,k2+4b≤0,又kx+b对一切x<0成立,则kx2+bx﹣1≤0,即△2≤0,b2+4k≤0,k≤0,b≤0,即有k2≤﹣4b且b2≤﹣4k,k4≤16b2≤﹣64k⇒﹣4≤k≤0,同理⇒﹣4≤b≤0,故②对,③错;④函数f(x)和h(x)的图象在x处有公共点,因此存在f(x)和g(x)的隔离直线,那么该直线过这个公共点,设隔离直线的斜率为k.则隔离直线方程为y﹣e=k(x),即y=kx﹣ke,由f(x)≥kx﹣ke(x∈R),可得x2﹣kx+ke≥0当x∈R恒成立,则△≤0,只有k=2,此时直线方程为:y=2x﹣e,下面证明h(x)≤2x﹣e,令G(x)=2x﹣e﹣h(x)=2x﹣e﹣2elnx,G′(x),当x时,G′(x)=0,当0<x时,G′(x)<0,当x时,G′(x)>0,则当x时,G(x)取到极小值,极小值是0,也是最小值所以G(x)=2x﹣e﹣g(x)≥0,则g(x)≤2x﹣e,当x>0时恒成立∴函数f(x)和g(x)存在唯一的隔离直线y=2x﹣e,故④正确故答案为:①②④【点睛】本题以命题的真假判断与应用为载体,考查新定义,关键是对新定义的理解,考查函数的求导,利用导数求最值,属于难题.15、【解析】根据导数的几何意义,结合切线方程,即可求解.【详解】根据导数的几何意义可知,,且,所以.故答案为:16、【解析】根据所给条件可归纳出当时,,利用迭代法即可求解.【详解】因为,,,所以,即,,且是递减数列,数列是递增数列或(舍去),,,故可得当时,,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)存在,3【解析】(1)结合递推关系可证得bn+1-bn1,且b1=1,可证数列{bn}为等差数列,据此可得数列的通项公式;(2)结合通项公式裂项有求和有,再结合条件可得,即求【详解】(1)证明:∵,又由a1=2,得b1=1,所以数列{bn}是首项为1,公差为1的等差数列,所以bn=1+(n-1)×1=n,由,得(2)解:∵,,所以,依题意,要使对于n∈N*恒成立,只需,解得m≥3或m≤-4又m>0,所以m≥3,所以正整数m的最小值为318、(1)(2)【解析】(1)根据题意列方程组求解(2)待定系数法设直线后,由条件求出坐标后代入双曲线方程求解【小问1详解】,解得,故双曲线方程为【小问2详解】,故设直线方程为则,由得:故,点在双曲线上,则,解得直线l的斜率为19、(1)(2),【解析】(1)根据同角三角函数的基本关系求解的值,再结合正弦定理求解即可;(2)根据三角形的面积可求解出边c的值,再运用余弦定理求解边b.【详解】(1),且,.由正弦定理得,.(2),.由余弦定理得,.20、(1);(2).【解析】(1)将不等式分解因式,即可求得不等式解集;(2)根据不等式解集,考虑其对应二次函数的特征,即可求出参数的范围.【小问1详解】当时,即,也即,则,解得或,故不等式解集为.【小问2详解】不等式的解集为,即的解集为,也即的解集为,故其对应二次函数的,解得.故实数的取值范围为:.21、(1)证明见解析;(2)【解析】(1)利用题中所给的条件证明,,因为,所以,,即可证明平面;(2)先证明平面,以为坐标原点,,,的方向分别为轴,轴,轴,建立如图所示的空间直角坐标系,求出平面的一个法向量,平面的一个法向量,利用向量的夹角公式即可求解【详解】(1)在图①中,连接,如图所示:因为四边形为菱形,,所以是等边三角形.因为为的中点,所以,.又,所以.在图②中,,所以,即.因为,所以,.又,,平面.所以平面.(2)由(1)知,,因为,,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论